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25. Abduction and the Emergence of Necessary
Mathematical Knowledge

Ferdinand Rivera

The prevailing epistemological perspective on
school mathematical knowledge values the central
role of induction and deduction in the develop-
ment of necessary mathematical knowledge with
a rather taken-for-granted view of abduction. This
chapter will present empirical evidence that illus-
trates the relationship between abductive action
and the emergence of necessary mathematical
knowledge.

Recent empirical studies on abduction and
mathematical knowledge construction have be-
gun to explore ways in which abduction could be
implemented in more systematic terms. In this
chapter four types of inferences that students
develop in mathematical activity are presented
and compared followed by a presentation of key
findings from current research on abduction in
mathematics and science education. The chap-
ter closes with an exploration of ways in which
students can effectively enact meaningful and
purposeful abductive thinking processes through
activities that enable them to focus on relational or
orientation understandings. Four suggestions are
provided, which convey the need for meaning-
ful, structured, and productive abduction actions.
Together the suggestions target central features in
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abductive cognition, that is, thinking, reasoning,
processing, and disposition.

25.1 An Example from the Classroom
Table 25.1 provides a short transcript of a very interest-
ing classroom episode on counting by six that happened
in a US first-grade class. The task, which was about
determining the total number of faces for four sep-
arate cubes, was given to the students to help them
apply and practice the arithmetical strategy of count-
ing on. Anna, Betsy, and all the students together in
a chorus-like manner in lines 9, 13, and 17, respectively,
eagerly modeled the same process of putting the last
known number in their head and counting six more. The
episode became interesting when Ian started to employ
counting by five, an arithmetical skill that the class al-
ready knew, to help him count by six in a systematic

way. As conveyed in line 20, Ian initially saw multi-
ples of five in the sequence (6, 12, 18, 24). In line 21,
when he added the ones and saw that the numbers in his
head matched the same numbers he saw on the teacher’s
board, the feeling of having discovered a wonderful
idea caused him to exclaim I was right! and encouraged
him to share his abduction with his classmates (lines
22–26).

Shotter [25.1] captures the following sense in which
first-grade student Ian has embodied abductive thinking
in relation to the number sequence (6, 12, 18, and 24):
Ian was “carried away unexpectedly by an other or oth-
erness to a place not previously familiar to him” [25.1,
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Table 25.1 Ian’s counting-by-six rule

Ms. Marla [M] presented the following task below during a board math session with her first-grade class
Number of cubes Number of faces
1 –
2 –
3 –
4 –
How many faces do four cubes have in all?
1 M: Let’s say I have four cubes. I want to know how many faces four cubes have in
2 all. So let’s count how many faces one cube would have.
3 Students [Ss]: M points to the faces one by one. One, two, three, four, five, six.
4 M: Okay so how many faces does one cube have?
5 Ss: Six!
6 M: Now I want to know how many faces two cubes would have.
7 Ss: Twelve!
8 M: Let’s see. How would I figure that out?
9 Anna: Put six in your head and count six more.
10 M: Okay so?
11 Ss: 6, 7, 8, 9, 10, 11, 12.
12 M: Okay next.
13 Betsy: You put 12 in your head and count six more.
14 M: Okay everybody!
15 Ss: 12, 13, 14, 15, 16, 17, 18.
16 M: Then?
17 Ss: You put 18 in your head and count. 18, 19, 20, 21, 22, 23, 24.
18 M: So how many faces are there in all?
19 Ss: 24.
As the students began to count by six, Ian [I] decided to count by five using his right hand to indicate one set of 5.
20 I: 5, 10, 15, 20.
He then used his right thumb and continued to count by one.
21 I: And then you add the ones. 21, 22, 23, 24. I was right!
Ian eagerly raised his hand and shared his strategy with Ms. Marla and his classmates.
22 I: Ms. M, I was thinking that in my head. . . . Ms. M I know another idea . . .
23 because you have all those sixes and you count by fives and there’s only ones
24 left.
25 M: So you went 5, 10, 15, 20. [Ian nods].
26 I: 21, 22, 23, 24.
27 M: Excellent!

p. 225]. He was pleasantly surprised about how easy
it was to count “all the sixes” by “counting by fives
and adding the ones left”, which generated in him an
intense feeling of discovering something new through
a guess that made sense and that he was able to ver-
ify to be correct. The following passage below from El
Khachab [25.2] provides another, and yet deeper, way
of thinking about Ian’s experience. El Khachab fore-
grounds the significance of having a purpose as a way
of motivating the emergence of new ideas, which is one
way of explaining how learners sometimes find them-
selves being carried away during the process of discov-
ery. The second sentence in the passage articulates in
very clear terms the primary purpose of abduction and
its central and unique role in the establishment of new
knowledge [25.2, p. 172]:

“Before asking where new ideas come from, we
need to ask what new ideas are for, and knowing
what they are for, we can attune their newness to
their purpose. And their purpose is, in the case of
abduction, to provide true explanations following
experimental verification.”

Ian saw purpose in counting by five plus one that
encouraged him to further pursue his new idea. Af-
ter verifying that his strategy actually worked on the
available cases, he then articulated an explanation that
matched what he was thinking in his head. The nature
of what counts as a true explanation in abduction is ex-
plored in some detail in the succeeding sections. For
now, it makes sense to think of abductive explanations
as modeling instances of “relational or orientational
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way of knowing”, which is a type of “embodied cop-
ing” that attends to [25.2, p. 172]

“the possible relations – what we might call the
relational dimensions – that exist as a dynamical
outcome of the interacting of objectively observable
phenomena which are not in themselves objectively
observable.”

Ian’s abductive thinking about counting by six is
worth noting early in this chapter in light of recent
findings on children’s algebraic thinking that show how
many of them tend to use their knowledge of the mul-
tiplication table to help them generate and establish
mathematical relationships and support their ability to
construct explicit or function-based formulas involving
linear patterns [25.3].

US eighth-grade student Dung’s figural process-
ing of the two pattern generalization tasks shown in
Figs. 25.1 and 25.2 illustrates another characteriza-
tion of abductive thinking that “carries over a deeper
similarity to a number of seemingly rather different sit-

Stage 1 Stage 2

Below are the first two stages in a growing pattern of squares

1. Continue the pattern until stage 5.
2. Find a direct formula in two different ways. Justify each formula.
3. If none of your formulas above involve taking into account overlaps, find a direct formula
 that takes into account overlaps. Justify your formula.
4. How do you know for sure that your pattern will continue that way and not some other way?
5. Find a different way of continuing the pattern and obtain a direct formula for this pattern. 

Fig. 25.1 Ambiguous
patterning task in compressed
form (after [25.4])

Stage 1 Stage 2 Stage 3

Consider the following array of sticks below

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify your
 formula.
B. Find a direct formula for the total number of points at any stage in the pattern. Justify your
 formula. 

Fig. 25.2 Square array
pattern (after [25.4])

uations” [25.1, p. 225]. Dung’s processing illustrates
a kind of double description (i. e., in Bateson’s [25.5,
p. 31] sense of “cases in which two or more infor-
mation sources come together to give information of
a sort different from what was in either source sepa-
rately”) that is a necessary condition when students are
engaged in mathematical thinking and learning. When
Dung was presented with the ambiguous Fig. 25.1 task
consisting of two beginning stages in a growing pattern,
he constructed a growing sequence of L-shaped figures
(Fig. 25.3). When he was asked to generate explicit
rules for his pattern, he suggested sD nC n! 1 and
sD 2n! 1. When he was asked to justify them, Dung
saw the pattern stages in terms of groups of squares. In
the case of his first rule, each stage in his growing pat-
tern consisted of the union of two variable units having
cardinalities n and (n! 1) corresponding to the column
and row of squares, respectively (see Fig. 25.3 stage 3
for an illustration). In the case of his second rule, two
composite sides of squares that had the same number of
squares on each side overlapped along the corner square
(see Fig. 25.3 stage 5 for an example).
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Stage 4Stage 3Stage 2Stage 1 Stage 5

3 + 2

2 · 5 – 1

Fig. 25.3 Dung’s growing L
shaped pattern (after [25.4])

For Dung, seeing pattern stages in terms of groups
enabled him to justify his explicit rules, which became
his abductive resource for constructing and justifying
an explicit rule for the square array pattern shown in
Fig. 25.2. Dung initially saw each pattern stage into
parts of separate rows of squares and separate smaller
squares per row (Fig. 25.4). Using stage 4, he parsed
the whole figure into four disjoint rows and counted the
number of sticks per row. In counting the number of
sticks per row, he saw four disjoint squares for a total of
4" 4D 16 sticks and then subtracted the three overlap-
ping vertical sticks. He then counted the total number of
horizontal and vertical sticks counting repetitions and
obtained .4"4/"4D 52. In his written work, he imme-
diately resorted to the use of a variable n to convey that
he was thinking in general terms, which explains the
expression .4n! .n!1//"n. Since he also saw that the
four disjoint rows had overlapping sides (i. e., the inte-
rior horizontal sticks), he then took away three .D 4!1/
groups of such four horizontal sticks from 52. That con-
crete step allowed him to complete his explicit rule

[4n – (n – 1)]n

4n – (n – 1)

(n – 1)n

4 rows of
[4(4) – 3]

sticks 4 groups of
4 sticks

3 overlapping vertical
adjacent sides

Take away
3 groups of
overlapping
horizontal

adjacent sides
of 4 sticks

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify your
 formula.

Fig. 25.4 Dung’s construc-
tion and justification of his
formula for the Fig. 25.2
pattern (after [25.4])

for the pattern, that is, sD .4n! .n! 1//n! .n! 1/n,
which he then simplified to sD 2n2C2n. Dung’s multi-
plicative thinking ability became his abductive – that is,
double descriptive – abstracting resource that enabled
him to infer deeper similarity among, and thus general-
ize to, different kinds of patterns.

In this chapter, we explore the relationship between
abductive action and the emergence of necessary math-
ematical knowledge. The prevailing epistemological
perspective on mathematical knowledge values the cen-
tral role of induction and deduction in the development
of necessary mathematical knowledge with a rather
taken-for-granted view of abduction that in the past
has been characterized as the creative, wild, and messy
space of theory generation or construction. However,
recent empirical studies on abduction and mathemati-
cal knowledge construction have begun to explore ways
in which abduction could be implemented in more sys-
tematic terms beyond a way of reasoning by detectives
from observations to explanations [25.6, p. 24] and
merely “studying facts and devising a theory to ex-
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plain them” because “its only justification is that if we
are ever to understand things at all, it just be in that
way” [25.7, p. 40]. For instance, Mason et al. [25.8]
associate abductive processing with the construction
of structural generalizations, while Pedemonte [25.9]
situates abduction within a cognitive unity thesis that
sees it as being prior and necessary to induction and
ultimately deduction. Recent investigations in science
and science education that pursue an abductive frame-
work also underscore the central role of abduction in
inference systems that model everyday phenomena. For
instance, Addis and Gooding propose the iterative cycle
of “abduction (generation) ! deduction (prediction)
! induction (validation) ! abduction” in modeling
the “scientific process of interpreting new or surpris-
ing findings by generating a hypothesis whose conse-
quences are then evaluated empirically” [25.10, p. 38].
Another instance involves Magnani’s [25.11] formu-
lation of actual computational models in which case
abduction is seen as central to the development of cre-
ative reasoning in scientific discoveries and can thus be
used to generate rational models.

In Sect. 25.2, we provide a characterization of the
four types of inferences that students develop in mathe-
matical activity. In Sect. 25.3 we note two key findings

from current research on abduction in mathematics
and science education, which should provide the nec-
essary context for understanding the ideas we pursue
in the succeeding section. In Sect. 25.4 we explore
ways in which students can effectively enact meaning-
ful and purposeful abductive thinking processes and
other [25.1, p. 224]

“kinds of preparing activities in mathematical
learning contexts that will enable learners to be-
come self-consciously engaged in, can get them
ready to notice, immediately and spontaneously, the
kinds of events relevant to their acquiring such re-
lational or orientation understandings – where, by
being ready to do something means what we often
talk of as being in possessions of a habit, an instinct,
an inclination, etc.”

Central to such processes and activities involves
orchestrating effective tasks and other learning con-
texts that will engage all students in abductive thinking,
which will go a long way in supporting growth in
necessary mathematical knowledge and excellence in
reasoning that is strategic and has “logical virtue (i. e.,
avoiding logical fallacies and learning what is and what
is not admissible and valid)” [25.12, p. 269].

25.2 Inference Types
Table 25.2 lists the characteristics of four types of in-
ferences that students develop in mathematical activity.
Abduction involves generating a hypothesis or narrow-
ing down a range of hypotheses that is then verified via
induction. Abduction is the source of original ideas and
is initially influenced by prior knowledge and experi-
ences, unlike induction that basically tests an abductive
claim on specific instances. The hope, of course, is
that possible errors get corrected through the inductive
route, which results in the construction of a generaliza-
tion that draws on the available instances. Like induc-
tion, which performs the role of verifying an abductive
claim, deduction produces results from general rules
or laws and thus does not produce any original ideas.
Unlike abduction, which is sensitive to empirical data,
deduction relies on unambiguous premises in order to
ascertain the necessity of a single valid conclusion. An
unambiguouswell-defined set or model assumes the ex-
istence of “a finite set of rules and without reference
to context” that clearly defines membership or relation-
ships among the elements in the set [25.10, p. 38].

Another useful way to think about abduction and
deduction involves truth tables. Deductions depend on
truth tables for validity, which also means to say that

the objects and rules of deduction all have to be well
established and well defined. Abductions do not de-
pend on truth tables and their validity is established
via induction [25.10, p. 37–38].Deductive closure con-
veys deductively derived arguments and instances and
is a necessary condition for algebraic thinking in both
symbolic and nonsymbolic contexts [25.13].

Consider, for example, the following four state-
ments below that have been extracted from eighth-grade
student Cherrie’s generalization of the Fig. 25.3 pattern:

Law (L): I think the rule is xD 2.nC 1/n.
Case (C): In stage 2, there’s two groups of three twice.

There’s two four groups of three in stage 3. There’s
two five groups of four in stage 4.

Result (R): Stages 1 through 4 follow the rule x equals
two times .nC 1/ times n.

All future outcomes (O): Stage 5 has 26.5/D
60 sticks, stage 10 has 211.10/D 220 sticks,
and stage 2035 has 8 286 520 sticks in all.

Deduction assumes a general law and an observed
case (or cases) and infers a necessary valid result, which
also means that it does not have to depend on real
or empirical knowledge for verification [25.14]. Cases
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Table 25.2 Types of inferences in mathematical activity and their characteristics

Inferential
type

Inferential
form

Intent Inferential attitude Sources Desired
construction

Nature of context,
verification,
and justification

Abduction From result
and law
to case

Depth
(intentional)

Entertains a plausible
inference toward a rule
Generates and selects
an explanatory theory –
that something maybe
(conjectural)

Unpredictable
(surprising facts;
flashes; intelligent
guesses; spontaneous
conjectures)

Un/
Structured

Context-bound;
Structured via induction

Induction From result
and more
cases to law

Breadth
(extensional)

Tests an abduced in-
ference; measures the
value and degree of
concordance of an ex-
planatory theory to
cases – that something
actually is operative
(approximate)

Predictable (examples) Structural
based on
abduction

Context-derived;
empirical
(e.g., enumeration,
analogy,
and experiments)

Deduction From rule
and case
to result

Logical
proof

Predicts in a methodical
way a valid result –
that something must be
(certain)

Predictable (premises) Structural
(canonical
form)

Decontextualized;
Steps in a proof

Deductive
closure

From an
established
deduction
to future
outcomes

Breadth
(apply)

Assumes that all future
outcomes will behave
in the same manner
as a result of a valid
deductive hypothesis

Predictable (premises
are valid deductions)

Structural
based on an
established
deduction

Decontextualized;
Mathematical induction
(e.g., demonstration of
a valid deductive claim)

are occurrences or instantiations of the stipulated law.
When the first three statements above are switched
in two different ways, we obtain the canonical struc-
tures for abduction and induction, which are ampliative
because the conclusions “amplify or go beyond the in-
formation incorporated in the premises” [25.11, p. 511]
and invalid (i. e., not necessary) from a deductive point
of view. In a deductive closure, an established deduction
becomes the cause or hypothesis that is then applied to
future outcomes, which are effects. Figure 25.5 visually
captures the fundamental differences among the four in-
ferential types.

From a logicopsychological perspective, students
need to learn to anticipate inferences that are sensible
and valid in any mathematical activity. Peirce [25.15,
p. 449], of course, reminds us that context matters
despite our naturally drawn disposition toward “per-
petually making deductions”. As an aside, kindergarten
students (ages five to six years) in the absence of formal

Deduction

R

L and C

Abduction

C

R and L

Induction

L

C and R

Deductive closure

O

L & C R

Fig. 25.5 Differences among the four inferential types

learning experiences appear to consider deductive in-
ferences as being more certain than inductive ones and
other guesses [25.16].

Students also need to understand the limitations
of each inferential process. For Polya [25.17], de-
duction exemplifies demonstrative reasoning, which is
the basis of the “security of our mathematical knowl-
edge” [25.17, p. v] since it is “safe, beyond contro-
versy, and final”. Abduction and induction exemplify
plausible reasoning, which “supports our conjectures”
and could be “hazardous, controversial, and provi-
sional” [25.17]. Despite such constraints, however,
Peirce and Polya seem to share the view that abduction,
induction, and deduction are epistemologically neces-
sary. According to Polya [25.17], while “anything new
that we learn about the world involves plausible reason-
ing”, demonstrative reasoning uses “rigid standards that
are codified and clarified by logic” [25.17, p. v]. Polya’s
perspectives are narrowly confined to how we come to
understand and explain the nature of mathematical ob-
jects, unlike Peirce who formulates his view by drawing
on his understanding of the nature of scientific practice.
“All ideas of science come to it by way of abduction”,
Peirce writes, which is the fundamental source of the
emergence of ideas and “consists in studying facts and
devising a theory to explain them” [25.7, p. 90].

In the next three subsections below, we discuss ad-
ditional characteristics of each inferential type.
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25.2.1 Abduction

Abduction, the source of original ideas, discoveries, and
explanatory theories, emerges and evolves in a contin-
uum of thought processes, uncontrolled and instinctual
(e.g., as initial impressions based on perceptions and
informed guesses) in the early phase and structured
and inferential (e.g., quasideductive) in a much later
phase [25.2]. Through abduction, “descriptions of data,
patterns, or phenomena” are inferred leading to plausi-
ble explanations, hypotheses, or theories “that deserve
to be seriously entertained and further investigated”
([25.18, p. 1021], [25.11, p. 511]). Perceptual-like clues
provide one possible source of abductive ideas [25.19].
The steps below outline a percept-based “formula that
is similar to abduction” [25.19, p. 305].

“A well-recognized kind of object, M, has for its or-
dinary predicates P[1], P[2], P[3], etc., indistinctly
recognized. The suggesting object, S, has these
same predicates, P[1], P[2], P[3], etc. Hence, S is
of the kind M.”

Iconic-based inferences also provide another possi-
ble source of abduction [25.19]. Icons, unlike percepts,
are pure possible forms of the objects they represent or
resemble. Iconic-based abductions employ the follow-
ing abductive process [25.19, p. 306]:

P1
H1
!
!
An iconic relationship between P1 and P2

P1 and P2 are similar (iconically)

)Maybe H1 (or something that is similar to H1) :

Abduction also involves “the problem of logical good-
ness, i. e., how ideas fulfill their logical purpose in the
world” [25.2, pp. 159, 162]. El Khachab [25.2] uses
the example of global warming to show how different
stakeholders tend to model different kinds of good-
ness based on their purpose. Following Peirce, he notes
that “the purpose of abduction is to provide hypothe-
ses which, when subjected to experimental verification,
will provide true explanations” [25.2, p. 162]. True ex-
planations refer to “sustainable belief-habits, that is, as
recurring settlements of belief about the world which
rely on experientially or experimentally verifiable state-
ments” [25.2, p. 163].

We note the following four important points below
about abduction.

First, Tschaepe [25.20] underscores the significance
of guessing in abduction, that is [25.20, p. 117],

“guessing is the initial deliberate originary activity
of creating, selecting, or dismissing potential solu-

tions to a problem as a response to the surprising
experience of that problem.”

Having a guess enables learners to transition from
the first to the second premise in Peirce’s general syl-
logism for abduction (i. e., the surprising fact, C, is
observed; but if A were true, C would be a matter of
course; hence, there is reason to suspect that A is true).
FollowingKruijff [25.21], Tschaepe notes that guessing
and perceptual judgment (i. e., observing a surprising
fact C) are “the two essential aspects that characterize
the generation of ideas” [25.20, p. 117], where the event
of surprise emerges from every individual knower’s
experiences, which is perceptual in nature. Guessing,
then [25.20, p. 117],

“follows perceptual judgment, signifying a transi-
tion between uncontrolled thought and controlled
reasoning. [. . . ] We guess in an attempt to address
the surprising phenomenon that has led to doubt; it
is our inchoate attempt to provide an explanation.”

Second, Thagard [25.22] makes sense in saying that
an abductive process involves developing and enter-
taining inferences toward a law that will be tested via
induction, which will then produce inferences about
a case. For Eco [25.23], however [25.23, p. 203],

“the real problem is not whether to find first the
Case or the Law, but rather how to figure out both
the Law and the Case at the same time, since they
are inversely related, tied together by a sort of chi-
asmus.”

Third, while the original meaning of abduction
based on Peirce’s work refers to inferences that yield
plausible or explanatory hypotheses, Josephson and
Josephson’s [25.24] additional condition of inferences
that yield the best explanation revises the structure of
the original meaning of abduction in the followingman-
ner:

Case: D is a collection of data (facts, observations,
givens).

Law: H explains D (would, if true, explain D).
Strong Claim: No other hypothesis can explain D as

well as H does.
Result: H is probably true.

Paavola [25.25] notes that while the original and re-
vised versions of abductions share the concern toward
generating explanations, they are different in several
ways. The original version addresses issues related
to the processes of discovery and the construction of
plausible hypotheses, while the revised version mod-
els a nondeductive form of reasoning (except induction)
that eventually establishes the true explanation. Across
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the differences, it is instructive to keep in mind both
Adler’s “simple, conservative, unifying, and yields the
most understanding” conditions for constructing strong
abductions [25.26, p. 19] and El Khachab’s logical
goodness conditions that characterize good abductions.
That is, they [25.2, p. 164]

“(1) need to be clear, i. e., they need to have distin-
guishable practical effects; (2) they need to explain
available facts; and (3) they need to be liable to fu-
ture experimental verification.”

Fourth, it is important to emphasize that abduc-
tions provide explanations or justifications that do not
prove. Instead, they provide explanations or justifi-
cations that primarily assign causal responsibility in
Josephson’s [25.27, p. 7] sense below.

“Explanations give causes. Explaining something,
whether that something is particular or general,
gives something else upon which the first thing de-
pends for its existence, or for being the way that it is.
[. . . ] It is common in science for an empirical gener-
alization, an observed generality, to be explained by
reference to underlying structure and mechanisms.”

25.2.2 Induction

Unlike abduction, induction tests a preliminary or an
ongoing abduction in order to support a most reason-
able law and thus develop a generalization that would
both link and unite both the known and projected cases
together in a meaningful way. By testing an abductive
claim over several cases, induction determines whether
the claim is right or wrong. So defined, a correct in-
duction does not produce a new concept that explains
(i. e., an explanatory theory), which is the primary pur-
pose of abductive processing. Instead, it seeks to show
that once the premises hold (i. e., the case/s and the
result/s), then the relevant conclusions (i. e., the law)
must be true by enumeration (number of observed
cases), analogy (i. e., structural or relational similarity
of features among cases), or scientific analysis (through
actual or mental experiments) [25.28] and thus reflect
causal relationships that are expressed in the form of
(categorical inductive or universally quantified) gen-
eralizations [25.11]. In the case of enumeration, in
particular, the goal is not to establish an exhaustive
count leading to a precise numerical value, but it is
about “producing a certain psychological impression
[. . . ] brought about through the laws of association,
and creating an expectation of a continuous repetition
of the experience” [25.28, p. 184]. In all three con-
texts of inductive justification, inductive inferences do

not necessarily yield true generalizations. However, “in
the long run they approximate to the truth” [25.29, p.
207].

Four important points are worth noting about the re-
lationship between abduction and induction, as follows:

First, El Khachab points out how both abduction
and induction appear to be “unclear” about their “practi-
cal effects which are essentially similar” [25.2, p. 166].
However, they are different in terms of “degree”, that is
[25.2, p. 166],

“an induction is an inference to a rule; an abduc-
tion is an inference to a rule about an occurrence, or
in Peirce’s own words, an induction from qualities
[. . . ] Induction is a method of experimental verifi-
cation leading to the establishment of truth in its
long-term application.”

Second, abduction is not a requirement for in-
duction. That is, there can be an abduction without
induction (i. e., abductive generalizations). Some ge-
ometry theorems, for example, do not need inductive
verification. In some cases, abduction is framed as con-
jectures that are used to further explain the development
of schemes ([25.30] in the case of fractions). However,
it is useful to note the insights of Pedemonte [25.9] and
Prusak et al. [25.31] about the necessity of a structural
continuity between an abduction argument process and
its corresponding justification in the form of a logical
proof. That is, a productive abductive process in what-
ever modal form (visual, verbal) should simultaneously
convey the steps in a deductive proof.

Even in the most naïve and complex cases of induc-
tions (e.g., number patterns with no meaningful context
other than the appearance of behaving like objects in
some sequence), learners initially tend to produce an
abductive claim as a practical embodied coping strat-
egy, that is, as a way of imposing some order or
structure that may or may not prove to make sense in
the long haul. Euler’s numerical-driven generalization
of the infinite series

P1
nD1

1
n2 is a good example. He

initially established an analogical relationship between
two different types of equations (i. e., a polynomial P of
degree n having n distinct nonzero roots and a trigono-
metric equation that can be transformed algebraically
into something like P but with an infinite number of
terms). Euler’s abductive claim had him hypothesizing
an anticipated solution drawn from similarities between
the forms of the two equations. Upon inductively ver-
ifying that the initial four terms of the two equations
were indeed the same, Euler concluded that [25.17, pp.
17–22]

1X

nD1

1
n2
D  2

6
:
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Third, another consequence of the preceding dis-
cussion involves the so-called inductive leap, which
involves establishing a generalization from concrete in-
stances to a conclusion that seems to contain more than
the instances themselves. On the basis of the character-
izations we have assigned to abduction and induction,
such a leap is no longer an issue since the leap itself is
settled by abduction. Hence, criticisms that in effect cite
“hazardous inductive leap” as an argument in relation to
erroneous patterning questions such as the one shown
in Fig. 25.6 is more appropriately and fundamentally
a problem of abduction.

Fourth, neither abduction nor induction can settle
the issue of reasonable of context. For example, the
patterning situation in Fig. 25.7 can have a stipulated
abduction and an inductively verified set of outcomes
based on an interpreted explicit formula. However, as
Parker and Baldridge [25.32] have noted, “there is no
reason why the rainfall will continue to be given by that
expression, or any expression”, which implies that the
“question cannot be answered” [25.32, p. 90].

25.2.3 Deduction and Deductive Closure

While abduction and induction provide support in
constructing or producing a theory, both deduction
and deductive closure aim to exhibit necessity. Pace
Smith [25.33]: “(R)epeated co-instantiation via induc-
tion is not the same as inferential necessity” [25.33,
p. 5]. A valid deduction demonstrates a logical im-
plication, that is, it shows how a law and a case as
premises or hypotheses together imply a necessary re-
sult, conclusion, or consequence. It is a “self-contained
process” because the validation process relies on “the
existence of well-defined sets” and preserves an already
established law, thus, “freeing us from the vagaries
and changeability of an external world” [25.10, p.
37].

A certain pattern begins with 1, 2, 4. If the pattern continues,
what is the next number?

A. 1
B. 2
C. 7
D. 8

Fig. 25.6 An example of an erroneous generalization
problem

It started to rain. Every hour Sarah checked her rain
gauge. She recorded the total rainfall in a table.
How much rain would have fallen after h hours? 

Hours Rainfall
1 0.5 in
2 1 in
3 1.5 in

Fig. 25.7 An Example of
a patterning task with an erro-
neous context (after [25.32])

Deductive closure emerges in students’ mathemati-
cal thinking and reasoning in at least two ways depend-
ing on grade-level expectations, as follows. Among
elementary and middle school students, once they (im-
plicitly) form a deduction, they tend to provide an
empirical (numerical or visual) structural argument then
a formal deductive proof as a form of explanation or
justification. For example, Cherrie’s algebraic gener-
alization relative to the pattern in Fig. 25.3 could be
expressed in deductive form. When she began to cor-
rectly apply her result to any stage in her pattern beyond
the known ones, her reasoning entered the deductive
closure phase.

Among high school students and older adults, once
they formulate a deduction, they tend to provide any of
the following types of justification that overlap in some
situations: an empirical structural argument; a logical
deductive proof; or a mathematical induction proof.
Figure 25.8 illustrates how a group of 34 US Alge-
bra 1 middle school students (mean age of 13 years)
empirically justified the fact that !a"!bD !.a"
!b/by demonstrating a numerical argument following
a statement-to-reason template [25.34, pp. 126–130].
Note that when the numbers in the empirical argument
shown in Fig. 25.8 are replaced with variables, the argu-
ment transforms into a logical deductive proof in which
case the steps follow a logical “recycling process” (Du-
val, quoted in Pedemonte [25.9, p. 24]), that is, the
conclusion of a foregoing step becomes the premise of
a succeeding step from beginning to end. Deductive clo-
sure for these students occurred when they began to
obtain products of integers (and, much later, rational
numbers) involving negative factors without providing
a justification.

Figure 25.9 shows a mathematical inductive proof
of a classic theorem involving the sum of the interior an-
gles in an n-sided convex polygon that has been drawn
from Pedemonte’s [25.9] work with 102 Grade 13 stu-
dents (ages 16–17 years) in France and in Italy. The
“multimodal argumentative process of proof” [25.31,
35] evolved as a result of a structural continuity be-
tween a combined abductive-inductive action that was
performed on a dynamic geometry tool, which focused
on a perceived relationship between the process of con-
structing nonoverlapping triangles in a polygon and
the effects on the resulting interior angle sums, and
the accompanying steps that reflected the structure of
a mathematical induction proof.
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–3 × 2  =   (–3 × 2) + 0 Additive identity property
 =   (–3 × 2) + [(3 × 2) + –(3 × 2)] Additive inverse property
 =   [(–3 × 2) + (3 × 2)] + –(3 × 2) Associative property
 =   [(–3 + 3) × 2] + –(3 × 2) Distributive property
 =   0 + –(3 × 2) Additive inverse property
 =   –(3 × 2) Additive identity property

Based on the figure below, Let us illustrate why –3 × 2 = –(3 × 2) using properties
of integers. –3 × 2 = –(3 × 2) means pull 3 groups of 2 cubes on the positive region
to the negative region

+– +–

Fig. 25.8 An empirical structural
argument for !a"!bD !.a"!b/
(after [25.34])

66. M: If n is equal to 3, f(n) is equal to 180 × 1...
 If n is equal to 4, f(n) is equal to 360, which is
 equal to 180 × 2
67. L: N equal to 5, f(n) is equal to 540, which is
 equal to 180 × 3...
68. M: So f(n) is equal to 180 × (n–2) ...
69. L: OK, now we have to understand why ... 

Base F(3) = 180°
F(n + 1) = 180°(n – 1)
F(n + 1) = F(n) + 180°
It is necessary to add 180° to F(n) because if we
add a side to the polygon, we add a triangle too.
The sum of the triangles angles is 180°.
So:
F(n + 1) = 180°(n – 2) + 180°
F(n + 1) = 180°(n – 2 + 1)
F(n + 1) = 180°(n – 1)

70. M: OK... wait!
71. L: F(4) is equal to 180 + f(3) because there is one
 triangle more... so 180 + 180...
72. M: OK, then f(5) is... is f(4) + 180... that means
 that f(n) is equal to f(n – 1) + 180
73. L: You always add 180 to the previous one
74. M: OK we can write f(n + 1) as f(n) + 180...

Fig. 25.9 A mathematical inductive proof for the sum of the interior angles in an n-sided convex polygon (after [25.8,
p. 37–38])

The work shown in Fig. 25.10 was also drawn from
the same sample of students that participated in Pede-
monte’s [25.9] study. Unlike Fig. 25.9, the analysis that
the students exhibited in Fig. 25.10 shows a structural
discontinuity between a combined abductive-inductive
action, which primarily focused on the results or out-

comes in a table of values, and steps that might have
produced either a valid empirical justification or a logi-
cal mathematical induction proof. Deductive closure for
these students occurred when they began to obtain the
interior angle sum measures of any convex polygon be-
yond the typical ones.
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Alice constructs the following table: Base for n = 3
180°(3–2) = 180°

Step
Hp: 180°(n–2)
Ts: 180°(n–1)

S(n) = 180° (n–2) = 180n –360
S(n+1) = 180° (n+1) –360 =180n +180 – 360 = n +1–2 =
n –1 Th
We have proved the thesis by a mathematical
induction

29. A: So the rule is probably 180 × (n–2) for an
 n-sided polygon
30. L: Yes... n is the number of sides

Sides Sum (Angles)
3
4
5
6

180°
360° 180° × 2
540° 180° × 3
720° 180° × 4

Fig. 25.10 Example of an erroneous mathematical inductive argument for the sum of the interior angles in an n-sided
convex polygon (after [25.8, p. 36])

25.3 Abduction in Math and Science Education
A nonexhaustive survey of recent published studies
dealing with abduction in mathematical and scientific
thinking and learning yields two interesting findings, as
follows.

25.3.1 Different Kinds of Abduction

Drawing on Eco’s [25.23] work, Pedemonte and
Reid [25.36] provided instances in which traditional
15–17-year-old Grades 12 and 13 students in France
and Italy modeled overcoded, undercoded, and cre-
ative abductions in the context of proving statements
in mathematics. For Pedemonte and Reid, abduction
comes before deduction. Some students in their study
generated overcoded abductions, which involve using
a single rule to generate a case, while others produced
undercoded abductions, which involve choosing from
among several different rules to establish a case. Over-
coded and undercoded abductions for Magnani [25.11]
exemplify instances of selective abductions because
the basic task involves selecting one rule that would
make sense, which, hopefully, would also yield the best
explanation. Medical diagnosis, for instance, employs
selective abductions [25.11]. In cases when no such
rules exist, students who develop new rules of their
own yield what Eco [25.23] refers to as creative abduc-
tions, which also account for “the growth of scientific
knowledge” [25.11, p. 511]. Pedemonte and Reid have
noted that students are usually able to construct a de-
ductive proof in cases involving overcoded abductions
due to the limited number of possible sets of rules to
choose from. Furthermore, they tend to experience con-
siderable difficulties in cases that involve undercoded
and creative abductions since they have to deal with

“irrelevant information in the argumentation process,
thus confusing, and creating disorder” in their process-
ing [25.36, p. 302]. An additional dilemma that students
have with creative abductions is the need to justify
them prior to using them as rules in a proof process.
“Consequently”, Pedemonte and Reid write [25.36, p.
302],

“it seems that there is not a simple link between the
use of abduction in argumentation and constructing
a deductive proof. Both the claim that abduction
is an obstacle to proof and the claim that abduc-
tion is a support, if considered in a general sense,
are oversimplifications. Some kinds of abductions,
in some context may make the elements required
for the deductions used in a proof more accessi-
ble. Some are probably less dangerous to use and
can make the construction of a proof easier to get
to because they could make easier to find and to
select the theorem and the theory necessary to pro-
duce a proof. However, other kinds of abductions
present genuine obstacles to constructing the proof.
This suggests that teaching approaches that involve
students conjecturing in a problem solving process
prior to proving have potential, but great care must
be taken that the abductions expected of the students
do not become obstacles to their later proving.”

Aside from selective and creative abductions,Mag-
nani [25.11] pointed out the significance of theoretical
and manipulative abductions in other aspects of every-
day and scientific work that involve creative processing.
Theoretical abductions involve the use of logical, verbal
or symbolic, and model-based (e.g., diagrams and pic-
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tures) processing in reasoning. While valuable, they are
unable to account for other possible types of explana-
tions (e.g., statistical reasoning, which is probabilistic;
sufficient explanations; high-level kinds and types of
creative and model-based abductions; etc.). Manipula-
tive abductions emerge in cases that involve “thinking
and discovering through doing”, where actions are piv-
otal in enabling learners to model and develop insights
simultaneously leading to the construction of creative
or selective abductions. They operate beyond the usual
purpose of experiments and create “extra-theoretical
behaviors” that [25.11, p. 517]

“create communicable accounts of new experiences
in order to integrate them into previously existing
systems of experimental and linguistic (theoreti-
cal) practices. The existence of this kind of extra-
theoretical cognitive behavior is also testified by
the many everyday situations in which humans are
perfectly able to perform very efficacious (and ha-
bitual) tasks without the immediate possibility of
realizing their conceptual explanation.”

Typical accounts of conceptual change processes in
science tend to highlight theoretical abductions, how-
ever [25.11, p. 519],

“a large part of these processes are instead to due
practical and external manipulations of some kind,
prerequisite to the subsequent work of theoretical
arrangement and knowledge creation.”

Manipulative abductions may also emerge in learn-
ing situations that provide “conceptual and theoretical
details to already automatized manipulative executions”
in which case either teacher or learner [25.11, p. 519]

“does not discover anything new from the point
of view of the objective knowledge about the in-
volved skill, however, we can say that his concep-
tual awareness is new from the local perspective of
his individuality.”

For example, Rivera [25.37] provides a narrative
account of US third-grade Mark’s evolving understand-
ing of the long division algorithm involving multidigit
whole numbers by a single-digit whole number. Mark’s
initial visual representation processing of (sharing-
partitive) division (Fig. 25.11) employed the use of
place value-driven squares, sticks, and circles. In the
case of the division task 126# 6, when he could not
divide a single (hundreds) box into six (equal) groups,
he recorded it as a 0. He then ungrouped the box into
ten sticks, regrouped the sticks together, divided the

Thousand Hundred Tens

Check your answer

Ones

Fig. 25.11 Mark’s initial visual processing of 126# 6

sticks into six groups, recorded accordingly, and so on
until he completed the division process for all subcol-
lections. His numerical recording in Fig. 25.11 also
captured every step in his sequence of visual actions.
Results of consistent visual processing enabled him to
shift his attention away from the visual form and to-
ward the rule for division, which was accompanied by
two remarkable changes in his numerical processing. In
Fig. 25.12, he performed division on each digit in the
dividend from left to right with the superscripts indi-
cating partial remainders that had to be ungrouped and
regrouped. In Fig. 25.13, he made another subtle cre-
ative revision that remained consistent with his earlier
work and experiences. When he was asked to explain
his division method, Mark claimed that “it’s like how
we do adding and subtracting with regrouping, we’re
just doing it with division”.Mark’s manipulative abduc-
tive processing for division involving whole numbers
necessitated a dynamic experience in which “ a first
rough and concrete experience” [25.11, p. 519] of the
process enabled him to eventually develop a version of
the long division process that “unfolded in real time”
via thinking through doing.

25.3.2 Abduction
in Mathematical Relationships

A study by Arzarello and Sabena [25.38] illustrates
the important role of abduction in constructing math-
ematical relationships involving different signs. Signs
pertain to the triad of signifier, signified, and an individ-
ual learner’s mental construct that enables the linking
between signifier and signified possible. Arzarello and
Sabena underscore their students’ use of semiotic and
theoretic control when they argued and proved state-
ments in mathematics. Semiotic control involves choos-
ing and implementing particular semiotic resources
(e.g., graphs, tables, equations, etc.) when they manip-
ulate and interpret signs (i. e., type-1 semiotic action),
while theoretic control involves choosing and imple-
menting appropriate theories (e.g., Euclidean theorems)
or parts of those theories and related conceptions when
they “elaborate an argument or a proof” (i. e., type-3
semiotic action; [25.38, p. 191]). Between type-1 and

ferdinand.rivera@sjsu.edu



Abduction and the Emergence of Necessary Mathematical Knowledge 25.3 Abduction in Math and Science Education 563
Part

E
|25.3

7. Eight-hundred thirty-seven divided by
three

8. Eight-hundred fifty-two divided by
three

Fig. 25.12 Mark’s initial numerical
division processing

11. Eighty-four divided by 7 8. Nine-hundred eighty-four divided by 8
Fig. 25.13 Mark’s manipulative
abductive processing of the numerical
methods shown in Figs. 25.11 and
25.12

type-3 semiotic action is a type-2 semiotic action that
involves using abduction to identify relationships be-
tween signs and assessing the arguments. Based on their
qualitative work with Grade 9 students, such [25.38, p.
202]

“relationships between signs are examined and
checked with redundant local arguments, and (eco-
nomic, explanatory, and testable) hypotheses are
detected and made explicit by means of abduc-
tions.”

Furthermore, they note how [25.38, p. 204]:

“abduction has an important role at this point. There
is an evolution from a phase where the attention is
mainly on the given signs, towards a phase where
the logical-theoretical organization of the argument
becomes the center of the activities and evolves
from abductive to deductive and more formal struc-
tures. [. . . ] Such an evolution implies a passage
from actions of type 1 to actions of type 2 and then
3, and a shift of control by the student, i. e., passing
from actions guided by semiotic control to actions
guided by theoretical control. [. . . ] Passing from
type 1- to type 3-semiotic actions means an evolu-
tion from the data to the truth because of theoretical
reasons. It is exactly this distinction that makes the
difference between [. . . ] a substantial argument and
an analytical argument, which is a mathematical
proof.”

Arzarello and Sabena’s study foregrounds the role
of abduction in inferential processing and documents
how a shift from abduction to deduction is likely to
occur when students’ mathematical thinking shifts in

focus from the semiotic to theoretical, respectively.
Studies by Pedemonte and colleagues [25.9, 36, 39] and
Boero and colleagues [25.40, 41] also note the same
findings in both algebra and geometry contexts. Across
such studies we note how abduction is conceptualized
in terms of its complex relationships with induction
and deduction. Other studies do not deliberately fo-
cus on such shifts and relationships, making it difficult
for students to see the value of engaging in abductive
processing in the first place. For example, Watson and
Shipman [25.42] documented the classroom event that
happened in a Year 9 class of 13–14 year-old students
in the UK that investigated the following task: Find
a way to multiply pairs of numbers of the form aC

p
b

that results in integer products. While the emphasis
of their study focused on learning through exempli-
fication by using special examples to help students
develop meaningful plausible structures, it seems that
the abductive process for them became a matter of con-
jecturing relationships based on their experiences with
their constructed examples. But certainly there is more
to abductive processing than merely generating conjec-
tures, as follows.

Several studies have suggested inferential model
systems that show relationships between and among
abduction, induction, and deduction. Addis and Good-
ing [25.10], for example, illustrate how the iterative
cycle of

abduction (generation)! deduction (prediction)!
induction (validation)! abduction

might work in the formation of consensus from beliefs.
Radford’s [25.43] architecture of algebraic pattern gen-
eralizations emphasizes a tight link between abduction
and deduction, that is, hypothetico-deduction, in the fol-
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Stage 4Stage 3Stage 2Stage 1

Fig. 25.14 Cross-squares pattern

lowing manner:

abduction (from particulars p1; p2; : : : ; pk
to noticing a commonality C)

! transforming the abduction

(from noticing C to making C a hypothesis)

! deduction (from hypothesis C
to producing the expression of pn) :

The studies conducted by Rivera [25.44] with
groups of elementary (i. e., first through third grade) and
middle school (i. e., sixth through eighth grade) students
in the US on similar pattern generalization tasks capture
two different inferential structures. Prior to a teaching
intervention that involved using multiplicative thinking
to establish pattern rules, both elementary and middle
school student groups employed the same inferential
structure of

abduction! induction! deduction

! deductive closure

that enabled them to generalize (correctly and incor-
rectly). The abductive phase in such a structure tended
to be instinctual and iconic- or perceptual-driven. Af-
ter the teaching intervention, however, Rivera observed
that while the elementary student groups continued to
model the same inferential structure in pattern gener-

alizing, the middle school student groups skipped the
induction phase and instead exhibited the following
structure:

abduction and deduction! deductive closure :

Abduction in this phase was combined with de-
duction and thus became structured and inferential as
a consequence of their ability to express generalizations
in multiplicative form. For example, when the pattern
generalization task shown in Fig. 25.14 was presented
to both elementary andmiddle school student groups af-
ter the teaching experiment, sixth-grade student Tamara
initially abduced the recursive relation C4, which en-
abled her to deduce the explicit rule sD n" 4C 1.
She then used her combined abductive-deductive infer-
ence to perform deductive closure, in which case she
induced the given stages and predicted the correct num-
ber of squares for any stage in her pattern. Tamara’s
empirical justification of her explicit rule for the to-
tal number of squares s involves seeing a fixed square
and four copies of the same leg that grew according to
the stage number n. In the case of third-grade Anna,
her multiplicative-driven abductive processing enabled
her to both construct and justify the same explicit rule
that Tamara established for the pattern. However, she
needed to express her answers inductively, as follows

4"1C1; 4"2C1; 4"3C1; : : : ; 4"100C1; : : :

25.4 Enacting Abductive Action in Mathematical Contexts
We close this chapter by providing four suggestions for
assisting students to enact meaningful, structured, and
productive abduction action. Together the suggestions
target central features in abductive cognition, that is,
thinking, reasoning, processing, and disposition. Em-
pirical research in mathematics education along these
features is needed to fully assess the extent and impact
of their power in shaping mathematical knowledge con-
struction.

25.4.1 Cultivate Abductively-Infused
Guesses with Deduction

Students will benefit from knowing how to generate
new guesses and conjectures that can explain a prob-
lem and occur “within the wider scope of the process
of inquiry” [25.20, p. 116]. That is, while abductions
certainly emerge from perceptual judgments, in actual
practice the more useful ones are usually constrained
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and logical as a consequence of knowing the problem
context and being “compounds of deductions from gen-
eral rules” (i. e., hypothetico-deductivist) that individ-
ual knowers are already familiar with (Peirce, quoted
in [25.20, p. 119]). Tschaepe writes, “(w)e guess in an
attempt to address the surprising phenomenon that has
led to doubt; it is our inchoate attempt to provide an ex-
planation” [25.20, p. 118]. Viewed in this sense [25.20,
p. 122],

“[a]bduction is a logical operation, and guess is log-
ical insofar as it is a type of reasoning by which
an explanation of a surprising phenomenon is first
created, selected, or dismissed [. . . ] Guessing is the
creative component of abductive inference in which
a new idea is first suggested through reasoning.”

25.4.2 Support Logically-Good Abductive
Reasoning

Students will benefit from knowing how to develop ab-
ductions that are logically good, that is, they are: clear
(i. e., can be confirmed or discomfirmed); can explain
the facts; are capable of being tested and verified; and
can lead to true explanations that establish “sustainable
belief-habits” [25.2, p. 163]. Such explanations may be
new and may emerge from guesses and instincts, but,
Khachab writes [25.2, pp. 171–172],

“logical goodness is the reason for abduction, under
its diverse meanings. No matter how abduction ac-
tually generates new ideas – whether it is abductive
inference, strategic inference, instinctive insight,
etc. – its purpose is, ultimately, to provide true
explanatory hypotheses for inquiry. And, in this re-
gard, new hypotheses should always be evaluated in
reference to their goodness.”

25.4.3 Foster the Development of Strategic
Rules in Abductive Processing

Paavola [25.12] distinguishes between definitory and
strategic rules. While definitory rules focus on logic and
logical relationships, strategic rules pertain to “goal-
directed activity, where the ability to anticipate things,
and to assess or choose between different possibili-
ties, are important” [25.12, p. 270]. Thus, abductive
strategies produce justifications for given explanatory
hypotheses, including justifications for “why there can-
not be any further explanation” [25.12, p. 271]. Hence,
all generated abductive inferences conveyed in the form
of discoveries provide an analysis or explanation of

the underlying conceptual issues and are not merely
reflective of mechanical recipes or algorithms for gen-
erating ideas and discoveries. Furthermore, the analysis
or explanation should present “a viable way of solving
a particular problem and that it works more gener-
ally (and not only in relationship to one, particular
anomalous phenomenon)” [25.12, p. 273] and fit the
“constraints and clues that are involved in the problem
situation in question” [25.12, p. 274].

25.4.4 Encourage an Abductive
Knowledge-Seeking Disposition

Sintonen’s [25.45] interrogative model of inquiry that
employs an explicit logic of questions demonstrates the
significance of using certain strategic principles and
why-questions as starting points in abductiveprocessing.
Questions as well as answers drive discoveries and the
scientific process.Questions, especially, “pick out some-
thing salient that requires special attention, and that it
also gives heuristic power and guidance in the search for
answers” [25.45, p. 250]. Furthermore, [25.45, p. 263],

“principal questions are often explanation-seeking
in nature and arise when an agent tries to fit new
phenomena to his or her already existing knowl-
edge. Advancement of inquiry can be captured
by examining a chain of questions generated. By
finding answers to subordinate questions, an agent
approaches step by step toward answering the big
initial question, and thus changes his or her epis-
temic situation.”

Students will benefit from situations and circum-
stances that engage them in a knowledge-seeking game
in which they “subject a source of information [. . . ]
to a series of strategically organized questions. This
Sherlock Holmes method therefore is at the heart of ab-
ductive reasoning” [25.45, p. 254]. Furthermore, the in-
terrogative model allows conclusions (i. e., answers) to
emerge. “For abductive tasks”, Sintonen writes [25.45,
p. 256],

“the goal must be understanding and not just knowl-
edge. A rational inquirer who wants to know why
and not only that something is the case must, after
hearing the answer, be in the position to say Now
I know (or rather understand) why the (singular
or general) fact obtains. Obviously this condition
is fulfilled only if she or he knows enough of the
background to able to insert the offered piece of in-
formation into a coherent explanatory account.”
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