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Abstract In this research article, I present evidence of the existence of visual templates in
pattern generalization activity. Such templates initially emerged from a 3-week design-
driven classroom teaching experiment on pattern generalization involving linear figural
patterns and were assessed for existence in a clinical interview that was conducted four and
a half months after the teaching experiment using three tasks (one ambiguous, two well
defined). Drawing on the clinical interviews conducted with 11 seventh- and eighth-grade
students, I discuss how their visual templates have spawned at least six types of algebraic
generalizations. A visual template model is also presented that illustrates the distributed and
a dynamically embedded nature of pattern generalization involving the following factors:
pattern goodness effect; knowledge/action effects; and the triad of stage-driven grouping,
structural unit, and analogy.

Keywords Pattern generalization . Algebraic thinking . Visual templates . Additive
reasoning . Multiplicative reasoning . Algebraic generalization . Abduction . Pattern goodness

1 Introduction

Figural patterns, whether constructed ambiguously (see, e.g., Fig. 1) or in a well-defined
manner (see, e.g., Figs. 2 and 3), consist of stages whose parts could be interpreted as being
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configured in a certain way.1 The primary task for learners is to engage in meaningful and
mathematically viable pattern generalization, which involves coordinating their perceptual2

and symbolic inferential abilities so they are able to construct and justify a plausible and
algebraically useful structure3 that could be conveyed in the form of a direct formula (i.e., a
function-based equation in explicit form; cf. Lee, 1996).

Meaningful patterns are structured sequences of objects. If we rearrange Fig. 1 so
that the stages look like the one shown in Fig. 4, then the task of constructing an algebraic
generalization for learners might become either unnecessarily complicated or a
meaningless activity. The point is, whether stages in a pattern are ambiguous or well
defined, learners should be able to establish a stable relationship within and across stages
that would enable them to perform extensions accordingly and in a mathematically
consistent manner.

Because pattern construction is a subjective and constructive activity, learners need to
know how to coordinate their perceptual and symbolic inferences effectively in relation to

1 I prefer to use the term figural pattern in order to convey what I assume to be the “simultaneously
conceptual and figural” (Fischbein, 1993, p. 160) nature of mathematical patterns. The term “geometric
patterns” is not appropriate due to a potential confusion with geometric sequences (as instances of
exponential functions in discrete mathematics). Also, I was not keen in using the term “pictorial patterns” due
to the (Peircean) fact that figural patterns are not mere pictures of objects but exhibit characteristics
associated with diagrammatic representations. The term “ambiguous” shares Neisser’s (1976) general notion
of ambiguous pictures as conveying the “possibility of alternative perceptions” (p. 50).
2 Especially in the case of patterning tasks that involve figural cues, among the most important perception
types that matter involve visual perception. Visual perception involves the act of coming to see; it is further
characterized to be of two types, namely, sensory perception and cognitive perception (Dretske, 1990).
Sensory (or object) perception is when individuals see an object as being a mere object in itself. Cognitive
perception goes beyond the sensory when individuals see or recognize a fact or a property in relation to the
object. For example, students who see consecutive groups of figural stages in Fig. 7 as mere sets of objects
exhibit sensory perception. However, when they recognize that the stages taken together actually form a
pattern sequence of objects, they manifest cognitive perception. Cognitive perception necessitates the use of
conceptual and other cognitive-related processes, enabling learners to articulate what they choose to
recognize as being a fact or a property of a target object. It is mediated in some way through other types of
visual knowledge that bear on the object, and such types could be either cognitive or sensory in nature.
3 I share Resnik’s (1997) view that the “primary subject-matter [of mathematics] is not the individual
mathematical objects but rather the structures in which they are arranged” (p. 201). Pattern stages basically
convey positions in some overall structural relationship and, so, do not have an identity or distinguishing
features outside that relationship despite the fact that specializing on a particular stage, which is considered a
useful generalizing strategy, may give the impression of a structure.

Below are the first two stages in a growing pattern of squares.   

Stage 1         Stage 2 

1. Continue the pattern until stage 5.
 
2. Find a direct formula in two different ways. Justify each formula. 
 
3. If none of your formulas above involve taking into account overlaps, find a direct 
formula that takes into account overlaps. Justify your formula. 
 
4. How do you know for sure that your pattern will continue that way and not some other
way? 
 
5. Find a different way of continuing the pattern and obtain a direct formula for this 
pattern. 

Fig. 1 Square pattern task in
compressed form
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an interpreted structure of a pattern that applies to both the known and unknown stages. On
the basis of recent findings at the K-9 and preservice elementary undergraduate levels
involving generalization in patterning activity, we still need further research in terms of how
such coordination could take place more effectively in a systematic manner (Mulligan &
Mitchelmore, 2009; Warren & Cooper, 2008; Rivera & Becker, 2008a; Rivera, 2007;
Billings, Tiedt, & Slater, 2007; Lannin, Barker, & Townsend, 2006; Lannin, 2005; Steele &
Johanning, 2004; Stacey & MacGregor, 2001). Recent patterning studies that work within a
constructivist framework have significantly contributed to our developing understanding of
how elementary and middle-school students obtain algebraic generalizations involving
figural and numerical patterns. In this article, I qualitatively assess the implications of a
design research experiment4 on pattern generalization that emphasize visualization and
multiplicative reasoning at the middle-school level.

I resolve the following two related research questions: How do middle-school students
perform pattern generalization that leads to an algebraically useful structure for a given
figural pattern on the basis of a few initial stages? Also, considering their developmental
capacities for perceptual and symbolic inference and their relatively few experiences in
structure formation and development, how do they impose a structure on sets of ambiguous
and well-defined stages such as the ones shown in Figs. 1 and 2, respectively, so that what
evolves is a mathematically acceptable pattern generalization? One resolution empirically
routes us to an elaboration of a cognitive model that accounts for middle-school students’
algebraic generalizations on the basis of findings and observations drawn from both the
clinical interviews and the design experiment.

4 Intrinsic to classroom teaching experiments that employ design research are two objectives, that is,
developing an instructional framework that allows specific types of learning to materialize and analyzing the
nature and content of such learning types within the articulated framework. Thus, in every design study,
theory and practice are viewed as being equally important, which includes rigorously developing and
empirically justifying a domain-specific instructional theory relevant to a concept being investigated. Further,
the content of the proposed instructional theory involves a well-investigated learning trajectory and
appropriate instructional tools that enable student learning to take place in various phases of the trajectory.
Finally, instruction in design studies is characterized as having the following elements: it is experientially real
for students; it enables students to reinvent mathematics through, at least initially, their commonsense
experiences; and it fosters the emergence, development, and progressive evolution of student-generated
models.

Consider the pattern below.  

Stage 1                               Stage 2                                     Stage 3 

 
1. How does Stage 4 look like? Either describe it or draw it on a graphing paper. 
 
2. Find a direct formula for the total number of gray square tiles at any stage. Explain
your formula. 
 
3. How many gray square tiles are there in stage 11? How do you know? 
 
4. Which stage number contains a total of 56 gray square tiles Explain.  

Fig. 2 Square frog pattern task
in compressed form
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In this article, I discuss visual templates in relation to pattern generalization activity
among a group of seventh- and eighth-grade students (ages 12 and 13 years) in an urban
school in Northern California. In particular, I focus on three template types, as follows:
additive, multiplicative, and pragmatic. The pattern generalization tasks that the students
pursued involved one semifree construction (Fig. 1) and two well-defined nonlinear
patterns (Figs. 2 and 3). In the next two sections, I further clarify the notion of meaningful
pattern generalization and discuss in some detail the nature and types of visual templates on
the basis of theoretical perspectives and empirical findings I have drawn from the relevant
literature.

2 Context of meaningful pattern generalization in this study

Meaningful pattern generalization involves the coordination of two interdependent actions,
as follows: (1) abductive–inductive action on objects, which involves employing different
ways of counting and structuring discrete objects or parts in a pattern in an algebraically
useful manner; and (2) symbolic action, which involves translating (1) in the form of an
algebraic generalization. The idea behind abductive–inductive action is illustrated in Fig. 5.
It is an empirically verified diagram of phases in pattern generalization that I have drawn
from a cohort of sixth-grade students who participated in a constructivist-driven pattern
generalization study for two consecutive years (Rivera, 2008; Rivera & Becker, 2008a, b,
2009a, b).

Stage 1                             Stage 2

Fig. 4 Reconfigured square
pattern

Consider the following array of sticks below. 

 

 
Stage 1                                  Stage 2 

 

Stage 3                                      Stage 4 

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify
your formula. 
 
B. Find a direct formula for the total number of points at any stage in the pattern. Justify
your formula. 

Fig. 3 The square array pattern
in compressed form
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As shown in Fig. 5, abduction is situated at the kernel of the generalizing process as
students begin to explore a plausible rule that can both explain the known stages and
be used to construct the unknown stages in any given pattern with incomplete
instances. The abductive phase is when students begin to offer an explanatory
hypothesis for a given pattern on the basis of the available instances, which is then
used to extend the pattern (near generalization tasks such as determining the total
number of sticks in the fourth and fifth stage of the pattern in Fig. 3) and repeatedly tested—
that is, the inductive phase—leading to either confirming a rule (preferably a direct
formula) or further developing another abduction. When the rule is confirmed, a
generalization emerges that consequently enables students to deal with far generaliza-
tion tasks such as obtaining the total number of sticks in the 77th stage of the pattern in
Fig. 3 without laboriously constructing the preceding 76 stages. A further abduction is
warranted when the rule makes it almost difficult to deal successfully with a far
generalization task.

3 Nature, characteristics, and types of visual templates in relation to this study

3.1 Nature of visual templates

In the case of structured sets, that is, those sets with “specific relations, functions, or
constants” (Giaquinto, 2007, p. 214) such as the set of natural numbers with operations of
addition and multiplication, the successor property, and the constant 0, Giaquinto (2007)
claims that structure discernment takes shape either through theory association or with the
use of a visual or perceptible template. When a structured set is either a particular
instantiation of an established theory or shares an isomorphic structure with some
known theory, individuals can deal with the elements in the set in the same manner that
they would manipulate the elements in the established theory. Further, when they do not
have access to such a theory, their visual powers can help them discover and explain
new relationships. Giaquinto (2007) articulates this visual activity clearly as follows:
“We can know them [i.e., structures] through visual experience of instances of them,
somewhat as we can know the butterfly shape from seeing butterflies” (p. 236). However,
such visual experience seems to presume access to a sophisticated mechanism that assists
in establishing an isomorphic relationship between the concrete and abstract representa-
tion of an intended structure.

In this article, I discuss the cognitive implications of a pattern generalization scheme that
I refer to as a visual template, a term that I appropriate from Giaquinto (2007) who used it

   Managing the Unknown

Known Abduction Induction
Stage (Forming Hypothesis)                                (Testing Hypothesis)

                                 Pattern Generalization

Fig. 5 Abductive–inductive
action involving pattern
generalization
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in the context of mathematical objects. But the manner in which I appropriate it is more
general than Giaquinto’s (2007) and shares more of the characteristics identified by Neisser
(1976) who explored the notion of template matching in the context of pattern recognition
of everyday objects. Giaquinto (2007), on the one hand, developed his notion of a visual
template from Resnik (1997) who describes a template as a “concrete device for
representing how things are shaped, structured, or designed” (Resnik, 1997, p. 227). When
we manipulate a template, much as we use blueprints, somehow the concrete experience
should provide either a structurally similar or structurally contained context that enable us
to make sense of the corresponding abstract patterns and their properties. For example,
when second-grade children begin to group concrete objects in a particular way, then the
concrete understanding that comes with the grouping experience should somehow
foreshadow what eventually would be known as the general structure of place value
notation or counting systems. There is, thus, an expectation of a percept-to-concept
projection process that is involved with the visual component assisting in constructing or
contextualizing the abstract elements involved. Neisser (1976), on the other hand,
articulates the important role of prototypes or canonical forms as a standard or basic
model that enable children to either learn a characteristic of a new object or compare the
new with an existing object.

The visual aspect of such templates emphasizes the role of the “‘eye’ as a legitimate
organ of discovery and inference,” thus, “restor[ing the] balance between mathematical
methodologies” (Davis, 1993, p. 342). Davis (1993) astutely points out how “discovery is
not usually made in the deductive way” (p. 342), that is, not in the sole context of logical
inference and verbal deduction but through our visual capacities of observing and seeing.
Also, following Arcavi’s sense of visualization in mathematics (2003), visual templates as a
type of visual strategy enable students to see the unseen of an abstract world that is
dominated by relationships and conceptual structures that are not always directly evident.
The characterization offered by Zazkis, Dubinsky, and Dautermann (1996) is also worth
noting. Within the context of constructive action, they see visualization as conveying a
relationship “between an internal construct and something to which access is gained
through the senses” (p. 1996). However, in this article, I characterize visual action in a
much stronger sense, that is, within the context of visual representations that employ
“visuospatial relations in making inferences about corresponding conceptual relations”
(italics added; Gattis & Holyoak, 1996, p. 231).

3.2 Characteristics of visual templates

Hutchins’s (1995) notion of strips that novices and experts use to learn rules in
navigation schools describes an important fundamental characteristic of visual
templates. In navigation schools, trainees learn to properly implement written sequences
of actions through procedures or strips that guide them toward the correct solutions. A
strip is a written form consisting of blank spaces that trainees fill in the correct order.
While strips as a type of sequential knowledge appear on the surface to be leaving little
to no room in helping trainees develop conceptual understanding (since they basically
follow them faithfully like a strict script), Hutchins (1995) notes that they depend on
how trainees develop them in memory. Remembering and memorizing strips could not be
one and the same thing since the experience of remembering could take many forms. For
example, experienced pilots who inspect airplanes oftentimes engage in an attention flow
as a consequence of having developed implicit spatial or sequential relations that they
initially acquired from a strip.
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Visual templates generally operate like Davis’s (1984) visual-mode-rated sequence
(VMS), that is, an everyday coping mechanism in which a knower uses a sequence of key
markings (say, landmarks) to achieve his or her desired goal (say, destination). Such
templates

function as a tool to extricate oneself from situations in which one may be uncertain
about how to proceed. As such it is linked, in this case, not so much to concepts and
ideas, but rather to perceptions that lead procedural decisions. (Arcavi, 2003, p. 224)

In VMS, one begins with a visual clue V1 that elicits a procedure P1 that then elicits
another visual clue V2 leading to a procedure P2, etc.

Visual templates also help learners engage in meaningful and purposeful diagram
parsing (cf. Koedinger & Anderson, 1995). Expert geometry provers use diagram parsing
or perceptual chunking that involves identifying basic (i.e., low-level components) and
advanced (i.e., high-level inductive components) configurations in a diagram, which then
enable them to instantiate the corresponding concepts or processes leading to steps in a
plausible deductive proof.

3.3 Types of visual templates: additive, multiplicative, and pragmatic schemes

Figure 6 illustrates the fundamental difference between additive and multiplicative schemes
involving whole-number objects in terms of level of abstraction and the complexity of
inclusion relations involved. Drawing on Piaget’s (1987) conceptualization, Clark and
Kamii (1996) share the same view that multiplication is an “operation that requires higher-
order multiplicative thinking that children construct out of their ability to think additively”
(p. 42). They note that while addition “is inherent in the construction of number, which is
accomplished by the repeated addition of ones,” multiplication “is a more complex
operation that is constructed out of addition at a higher level of abstraction” (ibid.). As
illustrated in Fig. 6, an additive scheme necessitates only one level of abstraction and one
inclusion relationship (e.g., each unit of three consists of ones; one gets included in two,
two in three, three in four, etc.). In the case of multiplicative schemes, there is a need to
establish simultaneously (as indicated by the arrows) the following levels of abstraction and
inclusion relationships: a many-to-one mapping (e.g., between three units of one and one
unit of three) and at least two levels of relationships (e.g., horizontally by ones: one in two,
two in three, etc.; horizontally by threes: one three in two threes, 2 threes in 3 threes; etc.;
vertically by threes: one threes, two threes, three threes, etc.).

Fig. 6 Comparing a additive and
b multiplicative thinking (Clark
& Kamii, 1996, p. 42)
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Two important points concerning the notion of a unit are worth noting in light of its
central role in the construction of additive and multiplicative schemes. The first point
concerns matters involving counting. According to Sophian (2007), counting involves “the
choice of a unit.... In principle, provided we are consistent about what we take as a unit, we
can count any sort of discriminable element in any kind of array” (p. 64). Further, she
astutely emphasizes how

mathematical thinking requires a concept of unit that goes beyond our everyday
notions of objects and groups of objects. Specifically, it requires flexibility in the
choice of units, together with a concern for equivalences among units..... Notably, in
counting, it is the identity of the unit rather than its size that matters: Some of the
shoes may be baby shoes and others large men’s shoes, but we treat each of them as
one shoe (or one half of a pair of shoes). (italics added for emphasis; Sophian, 2007,
p. 66)

In an additive scheme, which involves a single-level abstraction, we employ a unit that
may or may not be independent of the quantities involved in addition (and subtraction). For
example, in the comparison situation, “Maria is two inches taller than her sister Jana,” the
unit—inches—pertains to height that conveys a linear measure. We could, of course, use
other linear units such as centimeters. In the combination situation, “There are 29 students
in a room with 12 boys and 17 girls,” the unit—number of people—is independent of either
quantity being added. In a multiplicative scheme, which involves multilevel abstractions,
we employ a unit that is actually drawn from one of the quantities involved in
multiplication (and division). For example, in the comparison situation, “Maria is twice
as tall as her sister Jana,” the unit is Jana’s height which we then use to compare Maria’s
height with. In summary, both types of schemes necessitate the use of a common unit that
further enables us to understand the nature of the inclusion relationships shown in Fig. 6. In
Fig. 6a, the common unit may or may not be independent of the quantities involved. In
Fig. 6b, the many-to-one map initially relies on the choice of a common unit that is then
used to systematically count the quantities involved.

The second point involves the implications of different ways of seeing a unit in relation
to the construction of perceptual and symbolic inferences. In figural pattern generalizing, in
particular, I discuss briefly for now the well-established Law of Good Gestalt (Metzger,
2006, pp. 19–27). Later, in this article, I use the terms pattern goodness and Gestalt
effect interchangeably and they both refer to the same Gestalt law. This law pertains to the
order in which we perceive, discern, and organize a figure, a picture, or an image—that is,
we are predisposed to organizing on the basis of what naturally belongs or fits together,
including that which is simple and recognizable enough that enables us to associate or
specify a geometric shape or algebraic formula. Hence, a figural pattern that is high in
Gestalt goodness tends to have an interpreted structure that reflects the orderly, balanced,
and harmonious form of the pattern, which allows learners to specify an algebraically
useful formula easily. A figural pattern that is low in Gestalt goodness is interpreted as
being disorganized with a complex (unbalanced) structure that either has no easily
discernible parts or consists of parts that have no “natural divisions,” which makes the
task of constructing an algebraically useful formula difficult to accomplish. In both cases
of pattern goodness, the initial choice of a common unit plays a significant role in the
construction of an algebraic generalization, which eventually takes an additive or a
multiplicative form depending on whether a student is thinking additively or multipli-
catively, respectively, about the unit and its relationship to the overall interpreted structure
of the pattern.
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Table 1 provides a summary of at least seven different types of additive- and
multiplicative-based algebraic generalizations that students have been known to produce
in relation to pattern generalization activity. They have been drawn from recent studies
involving figural patterns that demonstrate the remarkable, albeit fundamental, view that
individuals tend to see patterns differently depending on how they conceptualize their units
(see the ZDM issue on pattern generalization for references to most studies; Rivera &
Becker, 2008a). More frequently than the other types, students tend to develop constructive
standard and nonstandard generalizations. The constructive dimension refers to the fact
that an interpreted structure relative to some pattern is seen as consisting of nonoverlapping
parts that when added together form the perceived shape that applies across the stages in
the pattern. The term standard and nonstandard refer to the algebraic terms in a direct
expression, that is, standard means the terms are already in simplified form while
nonstandard contains terms that can still be further simplified. Constructive generalizations
reflect the use of either an additive or a multiplicative scheme. Although not as frequent as
constructive generalizations, students also develop deconstructive generalizations, that is,
they see the known figural stages in a pattern as consisting of overlapping parts that can be
decomposed quite conveniently. In very few cases, students engage in auxiliary-driven
constructive or deconstructive generalizations, that is, they see each known figural stage in
a pattern in the context of a larger configuration that has a well-known and/or simpler
structure. Introducing an auxiliary set of objects strategically enables them to better see the
larger configuration in order to obtain an appropriate generalization for the pattern rather
quickly and easily. Very few students also have been observed to engage in transformation-
based generalizations, which initially involves actions of moving, reorganizing, and
transforming parts in a figural stage of a pattern into some recognizable figure with a more
familiar structure.

A pragmatic scheme occurs in problem situations when a student combines additive and
multiplicative schemes. This type of scheme shares Krutetskii’s (1976) notion of harmonic
style in his characterization of different cognitive styles in mathematical problem solving
(the two other styles being visual and verbal/analytic). In relation to patterning activity, the
clinical interviews that I conducted with 22 beginning ninth-grade students and 42
preservice elementary undergraduate majors indicate a disposition among several students
toward using a combination of visual and numerical strategies (Rivera & Becker, 2007;
Becker & Rivera, 2005).

4 Method

In this section, I talk about methodological issues relevant to documenting and establishing
the existence of visual templates in pattern generalization activity. I begin with the
surrounding context of the research study in order to understand how I arrived at such
templates.

4.1 Participants in the design experiment

The eighth-grade Algebra 1 class consists of 34 seventh- and eighth-grade students (28 of
Southeast Asian origins; two African–Americans; one Hispanic; two South Asians; one
Caucasian) in Northern California who participated in a 10-month (Fall 2007 to Spring
2008) research investigation on generalization and abstraction at the middle-grade level. In
this urban class that I taught throughout the school year, there were 12 seventh graders
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(mean age of 12; eight females, four males) and 22 eighth graders (mean age of 13; 14
females; eight males). I should note that prior to this particular yearlong research, 15 eighth
graders (“cohort 1”) from the above group of 34 students participated in an earlier 2-year
research investigation on pattern generalization. Cohort 2 consists of the remaining 19
seventh- and eighth-grade students who joined the Algebra 1 class.

4.2 An initial pattern generalization approach to the grade 8 algebra curriculum

While the California content standards in Algebra 1 do not include patterns in the list of
required topics, in my class, I used linear pattern generalization activity to help students
develop their initial understanding of functions, domain and range, linear functions,
equations, equivalence, and graphs. The students explored linear pattern generalization
tasks in the context of a 3-week design-driven classroom teaching experiment. (See Rivera
and Becker (2009b) for details regarding the teaching experiment.)

I note that prior to the above teaching experiment on pattern generalization, the students
participated in an earlier teaching experiment on integer and polynomial operations. In this
experiment, they used algeblocks (i.e., algebra tiles in three dimensions) in developing the
notion of a unit. For example, in adding (and subtracting) expressions such as 3x2+5x2, the
notion of like or similar terms emerged as a consequence of recognizing a common unit
(i.e., an expression, say, x2), which explained to them why the numerical coefficients and not
the variable factors were the ones that necessitated combination by either addition or subtraction.

Considering the fact that there were two student cohorts with different prealgebraic
experiences, the class explored the concept of multiplication involving two whole numbers
or monomials in two ways, as follows: (1) within a set-theoretic view, which involves
thinking and counting objects in terms of groups (e.g., 3 ∙ 2 means three groups of two
green cubes with the algeblocks; 4x2 means four groups of two yellow squares); and (2)
within a geometric view, which involves seeing rows and columns of objects (e.g., 3 ∙ 2
means three rows and two columns of green cubes). The set-theoretic view reinforces the
notion of a common unit, while the geometric view is useful in making sense of
multiplication and division involving polynomial expressions.

An interesting consequence of the above teaching experiment on integer and polynomial
operations involves the manner in which the students approached linear pattern
generalization activity. Their understanding of the salience of the unit concept enabled
them to develop and gain a better understanding of equivalent direct expressions and
formulas. They acknowledged the fact that their individual perceptual ability to interpret a
structure of a pattern relied on what they considered to be their choice of a unit relative to
the known pattern stages that would then be projected onto the extensions and the unknown
stages (Rivera & Becker, 2009b). Figure 7 provides a sample of student work on a pattern
generalization task. It illustrates the students’ additive- and multiplicative-based direct
formulas that they established and justified visually on the basis of what they individually
interpreted to be a plausible structure of the figural pattern.

4.3 Participants, research design, and task analysis in this study

Eight eighth-grade students from cohort 1 and three seventh-grade students from cohort 2
(four males, seven females) each participated in a 55-min clinical interview that happened
four and a half months after the teaching experiment on pattern generalization. All 11
students also participated in two clinical interviews immediately before and after the
teaching experiment.
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The overall research design could be described in diagram form as follows: X1–O–X2–X3,
where Xi refers to the ith clinical interview and O means teaching experiment intervention.

In establishing a case for the existence of visual templates in pattern generalization, I
took into account the three methodological issues below.

First, I thought that each student would be able to articulate his or her visual template
after a prolonged period of time in which no patterning activity was pursued on purpose.

Tamara (8 th Grader, Cohort 1) 

 

Ollie (7 th Grader, Cohort 2) 

 
Dwayne (8th Grader, Cohort 1) 

 

Selma (8 th Grader, Cohort 2) 

 
Emma (8 th Grader, Cohort 1) 

 

Joey (8 th Grader, Cohort 2) 

 

Fig. 7 Samples of students’ visuo-alphanumeric generalizations in relation to the growing chair pattern
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While the clinical interviews immediately after the teaching experiment (X2) gave some
indication that such templates existed, however, I was interested in assessing their stability
over time.

Second, since such visual templates target structure discernment and construction,
the three tasks used in the X3 clinical interview involved patterns that had ambiguous
(Fig. 1) and well-defined stages (Figs. 2 and 3). Such nonroutine tasks were meant for
them to come face to face with their default pattern generalization schemes, that is, visual
templates.

The ambiguous task shown in Fig. 1 has been drawn from Dörfler’s (2008) insights
about the current state of research on patterns. He notes that patterns with well-defined
stages impress on learners the view that “there is an expected direction of generalizing” that
“intimate one and only way [of continuing] a figural sequence” that could result in “a
strong regulating or even restrictive impact” on their thinking (p. 153). He then
recommends a different way of asking students to think about (figural) patterns, as follows:

How otherwise can one ask for, say, the number of matchsticks... in an “arbitrary” item of
the sequence? The situation would presumably be much more open if one asked simply
“How can you continue?” or “What can you change and vary in the given figures?”... I
rather want to hint to possible further directions for research... a plea for “free”
generalization tasks not restricted by pregiven purposes. (Dörfler, 2008, p. 153)

The Fig. 1 task targeted the students’ ability to pattern generalize by initially drawing on a
structure of their own making (with an initial constraint, hence, a semifree construction task),
which includes assessing how their visual templates enabled them to accomplish the task.

The two well-defined tasks shown in Figs. 2 and 3 exemplify nonlinear algebraic
generalizations. In the Algebra 1 class, due to content constraints in the state-recommended
mathematics curriculum, we did not explore nonlinear pattern generalization activities. My
basic goal in presenting them to the students was to assess the representational power of
their visual templates in an unfamiliar nonroutine context, that is, in Berkeley’s (2008)
sense, the capacity of “any set of symbols [to] have the necessary flexibility to make
manifest all the things that it needs to for the task at hand” (p. 97).

Third, I conducted all the clinical interviews.5 Each participant worked on the three tasks
(Figs. 1, 2, and 3) one at a time. He or she was asked to think aloud. Square blocks were
provided in the case of the Fig. 1 task and a centimeter graphing paper in the case of the Fig. 2
task. In addition to the three tasks, I asked each student to explain what patterns meant to him
or her, including factors that assisted him or her in constructing a direct formula (Fig. 8).

4.4 Data analysis

The data analysis process followed the steps described by Healy and Hoyles (1999).
Individual case studies were constructed that consist of selected interview segment

5 I am aware of issues surrounding researcher-driven interviews. The X3 interviews that I conducted
with the 11 students were third in a series of clinical interviews conducted during the 10-month project. A
colleague who was external to the project conducted both X1 and X2 interviews. Also, the X3 interview
would in fact be seventh in the case of the cohort 1 participants. Yanos and Hopper (2008) suggest the use
of repeated interviews as a way of minimizing what Bourdieu (1999) refers to as “false, collusive
objectification” whereby interviewees respond in ways that please their interviewers. Further, the findings
that I have drawn from the X3 clinical interviews and that are reported in this article were triangulated with
two other longitudinal data sources (i.e., available student written work and earlier clinical interviews
conducted by a colleague).
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transcripts, written work on pattern tasks, and data analysis of the relevant interview
segments. Analyses of the clinical interview were made, and copies of all relevant written
work from the teaching experiment on pattern generalization were also included. I then
developed and later synthesized individual cognitive maps with the aim of schematically
capturing their generalizing schemes from problem to problem. Next, I compared, analyzed,
and categorized the summative evidence using grounded theory that enabled me to make a
case about the existence of the three labels corresponding to the three template types. I
further engaged in several iterated processes of reading and analyzing the case studies in
order to ensure the validity of the categorization of student work (written and oral) and
obtain a sufficient characterization of each template type.

5 Results

Table 2 is a summary of the students’ direct formulas on each pattern task and categorized
by template type. Table 3 is a summary of the students’ perceptions of what patterns
meant to them. Each subsection below provides details of the students’ responses on the
X3 tasks. The first subsection discusses briefly the 11 students’ general perceptions of
patterns in mathematics. The second subsection provides examples of simple additive-
based pattern generalization templates that enabled the students to develop constructive
nonstandard algebraic generalizations. The third subsection discusses the significance of
multiplicative templates that further enabled them to produce constructive standard,
constructive nonstandard, and deconstructive algebraic generalizations. In situations
involving Figs. 2 and 3, in particular, their strategies reflect the use of pragmatic
templates, which involves a combination of numerical and visual approaches. The fourth
subsection provides examples of such instances in which case the algebraic general-
izations they produced could be characterized under any of the above generalization
forms discussed in Section 5.3.

5.1 Students’ general perceptions of patterns in mathematics

From Table 3, five students articulated the necessity of having a direct formula in any pattern,
while four others noted the increasing and decreasing relationship from stage to stage “in a
certain way.” The remaining two students noted the invariant figural structure across stages.

5.2 Additive templates and relevant mechanisms that lead to an algebraically useful structure

Additive constructive nonstandard generalizations Whole-number additive reasoning
involves one level of abstraction, one inclusion relationship, and the repeated addition of
ones (Fig. 6a). In the context of pattern generalization, an early additive visual template has
a similar characterization and is evident when students count discrete objects one at a time
without attending to any structure (cf. Rivera & Becker, 2008b, 2009a). A mature additive

 Respond to the following two questions below.  

1. How can you tell for sure when a group of instances (stage 1, stage 2, stage 3, etc.) 

forms a pattern?  

2. How did you come to understand how the direct formulas for patterns are constructed?

Fig. 8 Perceptions of patterns
and direct formula task in com-
pressed form
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template, which is the main concern in this section, also has a similar characterization.
However, what comprises a “one” is explained in the context of a variable unit. For
example, Karen (seventh grader, cohort 2) extended the incomplete pattern in Fig. 1 to five
stages by adding a square on each row and column per stage number, resulting in a growing
L-shaped pattern (Fig. 9). In constructing and justifying her direct formula,
x ¼ n� 1þ n� 1þ 1, we obtain a glimpse of her additive template, as follows:

Group these [the row and column squares excluding the common corner square] and
add 1 [the corner square] (see ESM 1 for a visual illustration).

Karen’s abductive–inductive action had her seeing each nonoverlapping set of squares as
a variable unit that then allowed her to symbolically transition to a direct formula in
additive form. In this situation, the cardinality (i.e., size) of each variable unit, n – 1, has
been drawn from the manner in which Karen saw its relationship with the corresponding
stage number. Further, while the size of her variable unit changed, its identity stayed the
same from stage to stage.

Karen’s additive template enabled her to produce and justify a constructive nonstandard
generalization (CNG). The nonsimplified nature of the terms in a CNG signifies seeing
parts that are related to each other relative to an interpreted structure. For example, in
Karen’s case, her interpreted structure of the growing L-shaped pattern in Fig. 9 involves
seeing two equally sized nonoverlapping (horizontal and vertical) legs and a corner square
in every stage, which explains why she had three terms in her direct formula.

Stage-determined generalizing process From the X3 clinical interviews, only three of the
total responses reflect the use of an additive CNG template in relation to the Fig. 1 task.
Dung (eighth grader, cohort 1) and Emma (eighth grader, cohort 1) produced the same
Fig. 9 pattern in relation to the Fig. 1 task, but their interpreted structure differed from

Table 3 Summary of the students’ perception of patterns in general (n=11)

Verbal responses Frequency

“The base stays the same and you add the stage number.” 2

“You have the same base and you add the same amount every time.”

“There’s a formula and it worked for every single one.” 4

“If it increases or decreases in a certain way.” 2

“Adds or subtracts and repeats the same amount.”

“If you break into parts, it’s the same thing.” 1

“Like the stage before it has the same shape.” 1

“When it’s hard to make a formula, it’s not a pattern.” 1

 
 

Stage 1      Stage 2             Stage 3                   Stage 4                         Stage 5  

Fig. 9 L-shaped pattern in rela-
tion to the Fig. 1 task
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Karen’s abduction that led them to the additive formula s ¼ nþ n� 1. In the interview
segment below, Emma demonstrates how she used her additive template in obtaining a
CNG from the available stages (refer to ESM 2 for a visual illustration). Dung also
provided the same reasoning as Emma.

FDR: What helped you in transitioning from these visual squares to a direct formula?

Emma: Grouping it, I guess. This is stage 1 [referring to the one square]. This is
stage 2 [the column of two squares]. This is stage 3 [the column of three squares] and
this is stage 4 [the column of four squares]. And then so ahm when I figured that, I try
to see what’s left. So if it’s 1 [the remaining square on the row of stage 2], if you
subtract the stage number from 1, you get 1. If you subtract 1 from the stage number
[stage 3] you get 2 [the two remaining squares on the row of stage 3]. If you subtract 1
from this stage number [stage 4], you get 3 [the three remaining squares on the row
of stage 4].

In the case of Emma and Dung, each figural stage consists of the union of two variable
units having cardinalities n and (n – 1) corresponding to the column and row of squares,
respectively. In their situation, while the two units are nonidentical, they are still related in a
particular way.

Pattern goodness All 11 interviewees produced the same L-shaped pattern shown in Fig. 9
in relation to the Fig. 1 task. Also, they were successful in coordinating their actions
relative to the Fig. 9 pattern, producing CNG and several more other types, which we
discuss in the next section. Suffice it to say, Fig. 9 represents a pattern that is high in Gestalt
goodness in that it consists of stages whose basic structure has cohesiveness (i.e., in the
sense of belonging together) and clearly redundant parts (i.e., repetition of the same part),
which also means to say that the pattern has a structure that enabled the students to “specify a
geometric or algebraic formula that st[ood] out through its simplicity” (Metzger, 2006, p. 24).

While an additive template is helpful in constructing and justifying a CNG, it is
considerably difficult to apply in figural patterns that are low in Gestalt goodness. For
example, Emma’s third extension relative to the Fig. 1 task is the triangular pattern shown
in Fig. 10. In the interview segment below, she tried to use an additive template in
constructing a direct formula.

Emma: I know what to write but I don’t know how to put it into a formula. Like so if
there’s n and then you add all the numbers before it. Like if it’s 5, you put n – 1,
n – 2, n – 3, and n – 4. But I don’t know how to put that in a formula.

FDR: So if it’s stage 6, if you use your formula, it is?

Emma: It’s n plus n – 5 plus n – 4 all the way to 1.

 

 
 
 

Stage 1  Stage 2       Stage 3                        Stage 4      Stage 5 

Fig. 10 Emma’s third pattern in
relation to the Fig. 1 task
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For Emma, her interpretive structure of Fig. 10 necessitates further conceptualization.
Her situation exemplifies the mutually determining roles of pattern goodness and visual
template use in pattern generalization, a finding that is further illustrated in the next two
sections below.

5.3 Multiplicative templates and relevant mechanisms that lead to an algebraically useful
structure

Constructive standard generalizations Whole-number multiplicative reasoning involves
simultaneously coordinating at least two levels of abstractions and inclusion relationships
(see Fig. 6b). In the context of pattern generalization, such coordination is articulated when
students see and count multiples (or copies) of the same variable unit(s). For example,
Diana (seventh grader, cohort 2) saw each of the four frog legs in the Fig. 2 pattern as the
union of a corner square and two copies of the same variable unit that enabled her to claim
the direct expression 2x+1: “[Referring to stage 3] 3, 3, and 1, so 2x+1.” This particular
algebraic generalization is classified as a constructive standard generalization (CSG).
(Refer to ESM 3 for additional examples of CSG.)

Deconstructive and auxiliary-based constructive nonstandard generalizations Diana’s
thinking relative to the Fig. 1 task also exemplifies the use of a multiplicative template.
She produced the same two patterns shown in Figs. 9 and 10. In the case of Fig. 9, Diana
obtained two direct formulas that initially showed her inclination toward a multiplicative
template. In the interview segment below, she described how she thought about her two
formulas.

FDR: Is there a formula here [referring to the Fig. 9 pattern]?

Diana: Uhm, n ¼ 2x� 1. This is step, stage 3. There’s like 2 threes and this one
[corner square] overlaps. [Refer to ESM 4 for a visual illustration.]

FDR: So for stage 4? [Diana gestures two groups of four squares from the figure and
the corner square.] Is there another formula for that?

Diana: Uhm, I’m not sure this is the simplest form. n ¼ x2 � x� 1ð Þ2. Like if you see
a square and a square here. [Refer to stage 4 in Fig. 11. Diana made a gesture to
indicate that she was taking away (4 – 1)2 or 9 squares].

Diana’s multiplicative template had her initially seeking out variable units, connecting
them with the appropriate stage number, and finally expressing their totality in
multiplicative form. Her direct formula relative to Fig. 9, n ¼ 2x� 1, exemplifies a
deconstructive generalization (DG), that is, she interpreted the general L-shaped structure

(4 – 1)2

4
2 

Stage 4

Fig. 11 Diana’s visual demon-
stration of the formula n ¼ x2 �
x� 1ð Þ2 in relation to the Fig. 10
pattern
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of her pattern in terms of two overlapping legs with a corner square that she counted
twice, which explains why she had to take away one square (i.e., the constant term
−1). Karen’s second direct formula, s ¼ 2n� 1, in relation to the Fig. 9 pattern was also a
DG. In justifying her DG, she clearly articulates her multiplicative template, as follows
(see ESM 4):

I visualized it in groups. So like for the 2n – 1, you take the stage number which are
these two [the two circled groups in every stage] and then you subtract 1 because
there’s an overlap.

The written work of Tamara (eighth grader, cohort 1) and Selma (eighth grader, cohort 2)
in Fig. 7 also demonstrates the use of a DG.

Diana’s other formula n ¼ x2 � x� 1ð Þ2 exemplifies the use of an auxiliary set on a
route to establishing a multiplicative-based CNG. As illustrated in Fig. 11, she initially
added an auxiliary set of 32 squares to complete the larger square (i.e., 42), which she then
took away.

In the case of Fig. 10, the direct formula that Diana constructed occurred in joint activity
with me due to the fact that she was unable to successfully implement her multiplicative
template in a nonlinear pattern that to her was low in Gestalt goodness. Initially, I had her
investigating a relationship between a particular figural stage and the complete rectangle
formed by joining two copies of the same stage (see Fig. 12 for an illustration involving
stages 2 and 3 of the pattern). We used the square blocks on the table in accomplishing the
abductive–inductive action that enabled her to infer a relationship and transition to
symbolic action. She then concluded that an appropriate direct formula is n ¼ x xþ1ð Þ

2 . This
particular generalization strategy that I used with Diana in relation to the Fig. 9 pattern also
exemplifies the use of an auxiliary set in the construction and justification of an algebraic
generalization.

Cherrie (eighth grader, cohort 1) employed a multiplicative template in relation to the
Fig. 3 task and produced a CNG. (Refer to ESM 5 for her written work.) She initially
interpreted each stage in the pattern in terms of multiples of horizontal rows and vertical
columns of sticks. She then counted in the following manner: “[In stage 2] there’s 2, 2, 2, 2,
2, and 2; [in stage 3] there’s 3, 3, 3, 3, 3, 3,3, and 3; so there’s two groups of 3 twice....
There’s two 4 groups of 3 [referring to stage 3], two five groups of 4 [referring to stage 4]...
so x equals two times n+1 times n.” She then wrote, “x ¼ n nþ 1ð Þ2.”

Figural parsing The strength of Diana’s multiplicative template became especially evident
in the case of the Fig. 3 pattern. Initially, she obtained a formula for the number of sticks on
the perimeter of each square, 4x. Next, she counted the interior sticks as follows: (1) “[in
stage 2] 2 minus 1 would be 1 so there would be 1 row going down and another row so that
would be rows of 2 sticks;” (2) “in stage 3, there’s 2 rows of 3 sticks;” (3) “[in stage 4

Stage 2                                                      Stage 3  

Fig. 12 Rectangles associated
with stages 2 and 3 of the
pattern in Fig. 10
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there’s] three, okay, it’s two sets of three rows of 4.” She then wrote 4xþ 2 x� 1ð Þx ¼ s, a
CNG, which she then simplified to 2xþ 2x2 ¼ s.

Like Diana, Dung also employed a multiplicative template in his pattern
generalization of the Fig. 3 task. Unlike Diana who developed a CNG, Dung approached
the task using a DG. Figure 13 provides a visual illustration of how he figurally parsed a
stage into parts of separate rows of squares and separate smaller squares per row. He
used stage 4 to aid him in performing a general abductive action, that is, he first parsed
the figure into four disjoint rows and counted the number of sticks per row. In counting
the number of sticks per row, he saw four disjoint squares for a total of 4 � 4 ¼ 16 sticks
and subtracted the three overlapping vertical sticks. He counted the total number of
horizontal and vertical sticks counting repetitions and obtained 4 � 4� 3ð Þ � 4 ¼ 52. In his
written work, he immediately resorted to the use of a variable n to convey that he was
thinking in general terms, hence, the expression (4n− (n−1))n. Next, since the four
disjoint rows had overlapping sides (i.e., the interior horizontal sticks), he took away
three (= 4 – 1) groups of such four horizontal sticks from 52. This concrete instance
allowed him to complete his DG, that is, s ¼ 4n� n� 1ð Þð Þn� n� 1ð Þn, which he then
simplified to s ¼ 2n2 þ 2n.

Sequence of multiplicative templates Dung’s pattern generalization process in Fig. 13 could
also be interpreted as having employed a sequence of DGs before arriving at a final
algebraic generalization. Diana also used a sequence of actions. In the interview segment
below, she employed a multiplicative template in the case of Fig. 2. While her final direct

 
 
 
 
       
 
 
 
 
 
 
 

4n − (n − 1) 

4 groups of 4 
sticks 

3 overlapping vertical 
adjacent sides 

[4n − (n − 1)]n 

4 rows of 
[4(4) − 3] 
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(n − 1)n 

Take away 3
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groups of

Fig. 13 Dung’s construction and justification of his formula for the Fig. 3 pattern
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formula took the form of a CSG, her thinking reflects a combined use of CSG, DG, and
CNG, as follows.

Sequence of abductive–inductive actions Sequence of symbolic actions

Diana: Well, basically you always, like, to this number here, to this part
here [referring to stage 2 in Fig. 2], you added 1 and on this side you
add 1 to make it longer [referring to the growing legs on every corner.]
You always add 1 to everything to make the legs longer. Instead of like
2×2, you make it 3×3. And for this one, too [the middle rectangle],
instead of 1 by 2, you make it 2×3. [She then finds a direct formula
and obtains x xþ 1ð Þ þ 2xþ 1ð Þ ¼ n].

FDR: Okay, so tell me what’s happening there? Where did this come from,
x (x+1)?

CNG: x (x+1)

Diana: This, the little square, x times x+1.

FDR: So where’s the x times (x+1) here [referring to stage 3 in Fig. 2]?

Diana: Like 3×3, or 3×4.

FDR: So where’s the 2x+1 coming from?

Diana: This. I mean I can look at it like 2 times (x+1) minus 1 but I just
made it, like, 3, 3, and 1, so 2x+1. [She initially saw that each leg
had two overlapping sides that shared a common corner square.]

DG: 2(x+1) – 1

FDR: But this 2x+1 is just for this side [referring to one leg], right?

CSG: 2x+1

Diana: For all of the legs, oh, [then adds a coefficient of 4 to her formula:

x xþ 1ð Þ þ 4 2xþ 1ð Þ ¼ n]

CNG : x xþ1ð Þþ4 2xþ1ð Þ ¼ n

FDR: Okay, so are you happy with your formula?

Diana: I think I could simplify it. I’d like to see what happens if I simplify
it. [She then simplifies her formula to x2 þ 9xþ 4 ¼ n.]. 4 would be these
[the corner middle squares] I’m pretty sure. 9x would be, 8, oh, yes, I see
it. I see how it works. There’s an x squared here [referring to the
rectangle which she saw as the union of an n by n square and a column
side of length n] if you see one square here and the 9x would be these legs
[referring to the (n+1)th column of the rectangle of length n and the eight
row and column legs minus the corner middle squares]. Plus 4 would
be the center of each leg.

CSG: x2 þ 9xþ 4 ¼ n

5.4 Pragmatic templates and consequences

Numerically driven pragmatic templates and consequences Pragmatic reasoning involves
flexibly or harmonically employing a combination of different approaches such as visual
and numerical strategies in pattern generalization. Emma’s thinking in relation to the Fig. 3
task provides a good starting illustration of pragmatic templates. (Refer to ESM 6 for her
written work.) She began inspecting parts in a figural stage that mapped with the
corresponding stage number and then tried to use an additive template. When that did not
work for her, she then claimed that since “stage 1 had 4 sticks... it is like four of stage 1.” In
stage 2, she counted 12 sticks in total and then abducted the following claim: “[stage 2] •
6.” She then performed induction by using stages 3 and 4, that is: since stage 3 has 24
sticks, then it is equal to “[stage 3] • 8;” and since stage 4 has 40 sticks, it could be seen as
“[stage 4] • 10.” In transitioning to symbolic action, she inferred the direct formula
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s ¼ n � 2nþ 2ð Þ. In justifying her formula, Emma claimed that the variable n referred to
stage number and that the numbers 4, 6, 8, and 10 were “even numbers and that to get to
10, I multiply it by 2 and add 2, so 2n+2.” But when I asked her to explain how her direct
formula might make sense in the given figural stages, she said, “I don’t know, I don’t see it
in the picture.” Emma’s pragmatic template in this case was a combination of numerical and
visual approaches. However, the dominance of the former approach consequently prevented
her in justifying her formula.

Karen also used a numerical approach when she was unable to make sense of the
Fig. 3 pattern visually. (Refer to ESM 7 for her written work.) Initially, she saw that the
total number of sticks on the perimeter of each square was 4n (“there are four sides... four
groups of the stage number”). She then noticed that the interior sticks had the following
relationship, which she organized in a table: stage 1 has 0 sets of horizontal and
vertical sticks; stage 2 has 2 sets of 2 sticks; stage 3 has 4 sets of 3 sticks; stage 4
has 6 sets of 4 sticks;...; and stage n has (2n−2) sticks. In obtaining the expression 2n−
2, she employed a numerical strategy. Unfortunately, the dominance of the numerical
approach, as in Emma’s case above, prevented her in justifying her direct formula,
x ¼ 4nþ n 2n� 2ð Þ.

Some of those students who employed a pragmatic template, in fact, relied more on
numerical than visual approaches. For example, Anna’s (eighth grader, cohort 1) pragmatic
template below allowed her to correctly justify figural patterns that to her were high in
Gestalt goodness such as the one shown in Fig. 9.

Like if I look at it visually, then, or like if I write it out in numbers like how much is
added on, then I use that amount or number. Then I try to like use the stage number,
too, since it’s like it’s kinda part of the equation. And then ahm since you usually
multiply it and you add or subtract the amount that you need to get the stage amount.

However, she found it difficult to employ her template above in the case of Figs. 2 and
3. As shown in Fig. 14, Anna initially tried a differencing-table strategy that she found
difficult to use in constructing a direct formula using her template above. Unlike Frank
below, however, she decided to use a visual strategy that conveys the use of a multiplicative
template.

Frank (eighth grader, cohort 1) consistently employed a pragmatic template in Figs. 1, 2,
and 3. He explained his template in the following way:

I’d looked through the differences of each pattern, say [stages] 1 and 2 [referring to
the pattern in Fig. 9]. You notice that there’s two more than before. So when I look at
that, I wanna multiply it by the number that’s different because you want to get to the
next stage, right? And that’s how many is needed to get to the next stage of your
pattern.

However, because the numerical approach was more dominant than the visual in his
pragmatic template, his justification focused on how each factor and term in his direct
formulas actually assisted him in constructing his figural stages in a step-by-step manner
without attending to structural issues (invariance, unit, etc.). For example, Frank’s extension
of the Fig. 1 task is shown in Fig. 9. He obtained his two direct formulas S ¼ 2x� 1 and
S ¼ 2 x� 1ð Þ þ 1 as a result of seeing a common difference of two squares (“there’s two
more than before”) from one stage to the next. The two interview segments below provide
his justifications.
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Frank’s justification of the formula S ¼ 2x� 1 (see ESM 8 for a visual illustration)

Frank: In stage 2, 3 total, so if I had another 1, that would equal 4 so subtract 1 to get
to stage 3.

FDR: What about for stage 3?

Frank: You would have ahm so 2 times 3 is 6 there would be an extra so you could
put wherever. [He puts the extra square at the end of the column.] But then you
subtract 1 which is the extra to get to 5.

FDR: Okay, so one more.

Frank: So for stage 4, it has a total of 7. And then there’s 1 more [puts the extra
square at the end of the column] so you subtract that extra to get your total.

Frank’s justification of the formula S ¼ 2 x� 1ð Þ þ 1 (see ESM 9 for a visual illustration)

FDR: Show me how you make sense of that formula here.

Frank: So if it’s 2 minus 1, that gives you 1, multiply by 2 is 2 plus 1 gives you 3.

Fig. 14 Anna’s written work in relation to the Fig. 3 pattern task
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FDR: So where is that there [referring to the stages]?

Frank: So say, stage 2, right [starts with 2 squares]? And then 2 minus 1 is 1 [takes
away 1 square] and then you multiply 1 by 2 which gives you that [puts another
square] and then you add 1 there.

FDR: Hmm, so let’s try that for this one [stage 3].

Frank: So it would be 3 [starts with 3 squares] for this one. And then you subtract 1
which gives you a total of two squares. 2 times 2 gives you 4 and then you’re missing
one so you add 1 more.

Tamara’s (eighth grader, cohort 1) extended pattern in Fig. 16 relative to the Fig. 1 task
exemplifies a situation in which the use of a pragmatic template did not yield an algebraic
generalization. Figure 15 shows portions of her written work relative to the Figs. 2 and 3
tasks that reflect consistency in the use of a multiplicative template leading to two CNGs
resulting from a figural parsing strategy. In the case of Fig. 16, she first compared stages 1
and 2 and saw that stage 2 had “one group of two squares” added to stage 1. She then
pursued the following structure: stage 3 would have “two groups of two squares” added to
stage 2; stage 4 would have “three groups of two squares” added to stage 3; stage 5 would
have “four groups of two squares” added to stage 4; etc. In thinking about a direct formula,
she first tried to visually find a way of linking the extra square and the two equal rows of
squares that she inferred on her pattern. When asked to explain her thinking, she claimed
that she was trying to “find a way to relate grouping and stage number in some way.” When
her visual attempts failed, she switched to a numerical approach and produced the following
sequence: (2 ∙ 1−1, 2 ∙ 2−1, 2 ∙ 4−1, 2 ∙ 7−1, 2 ∙ 11−1, 2 ∙ 16−1). She then set up a table of
values and tried to make sense of the subsequence (1, 2, 4, 7, 11,...) by relating each term
with the associated stage number. Feeling frustrated, she abandoned her Fig. 16 pattern,
produced the pattern shown in Fig. 9, and then obtained the formula x ¼ 2p� 1, a DG.

Pragmatic templates that demonstrate an effective synergy between numerical and visual
strategies There were students who also employed a pragmatic template but were
successful in maintaining a balance between numerical and visual approaches. For
example, when Cherrie was presented with the Fig. 1 task, she produced the same pattern
shown in Fig. 9. She then established her direct formula, x ¼ 2n� 1, numerically by noting
that the pattern “always adds by 2.” In her justification below, her reasoning conveys the

Figure 2 Figural Parsing Leading to the Direct Formula 
s = n2 + n . 8+ (4 + n)

Figure 3 Figural Parsing Leading to the Direct Formula 
2 p2 + 2 p = x

 

Fig. 15 Tamara’s pattern gener-
alization in relation to the
Figs. 2 and 3 tasks. Figure 2
figural parsing leading to
the direct formula
s ¼ n2 þ n � 8þ 4þ nð Þ.
Figure 3 figural parsing
leading to the direct formula
2p2 þ 2p ¼ x
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use of an auxiliary set that enabled her to explain why and how her multiplicative-based
CSG made sense to her (see ESM 10 for a visual illustration).

Cherrie: There’s a pattern, so it always adds by 2. So, hmm, oh okay got it. OK. Uhm,
x ¼ 2n� 1.

FDR: So what do these variables mean, the x and n?

Cherrie: x is the amount of blocks and n represents the stage number.

FDR: Okay. So how do you justify your formula?

Cherrie: So 2n, because it increases by 2, so you times it by 2 and then you minus 1
[i.e., a row and a column having the same number of squares and then taking away 1
block]. It’s like a missing block like the one in the middle [points to the missing block
in stage 2], there [points to the missing block in stage 3 after making a gesture that
conveyed rotating the row of squares into a column of squares], there [same pointing-
gesturing act].

FDR: You started with those set of stages in your pattern. And then you’re able to
successfully come up with a formula in symbolic form by using algebra. So what
helped you?

Cherrie: Well... since you came in and then you introduced us to formulas, and then you
introduced us to patterns. Like how, like 1 to 3, but how is it increasing? Then 3 to 5, how
is it increasing? And then we... it says by 2. And then so we say if it’s increasing, then you
times it by what, the stage number. So if it’s like 1 [referring to stage 1], and then it’s 2
and 3 [counting on two more blocks in stage 2], right? So you go two times your stage
number, which is 1 [referring to stage 1], and it’s 2. But because it’s [the result] like a
block more, so you have to minus 1 to equal the figure [the 1 block in stage 1].

Pragmatic templates that combine additive and multiplicative templates Karen’s pattern
generalization of the Fig. 2 task, x ¼ n nþ 1ð Þ þ nþ 1ð Þ þ n½ �4, exhibits a pragmatic
template that combines additive and multiplicative templates. She initially saw a middle
rectangle with dimensions n and (n+1). She then interpreted each of the four L-shaped legs
to be the union of a column side with (n+1) squares and a row side with n squares.

6 Discussion

Revisiting students’ general perceptions of patterns A tough question, but one that cuts
through much of constructivist thinking involving pattern generalization, is the following:

Stage 1          Stage 2                      Stage 3                                                Stage 4 

Fig. 16 Tamara’s extension of
the stages in Fig. 1
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How is it possible for learners to obtain, and even more so justify, an algebraically useful
generalization when some relevant structure is in the process of being determined? In
other words, which comes first to learners: structure or formula? Arnheim (1971), who
addresses similar abstraction issues, claims that “it requires a mind that, in perceiving a
thing, is not limited to the view it receives at a given moment but is able to see the
momentary as an integral part of a larger whole, which unfolds in a sequence” (p. 50). On
the basis of findings drawn from this study, an operational, empirical response involves
visual templates that operate like mental strips (in Hutchins’s sense) that the 11 students
demonstrated and articulated within and across task. Visual templates exist and individually
could be seen as a product of a distributed and coordinated phenomenon involving several
factors such as the interaction between abductive–inductive and symbolic actions (Fig. 5)
or, more generally, those identified in Fig. 17, which we discuss in the next subsection
below.

The 11 students’ canonical images of patterns, which they described in words in Table 3,
provide a sufficient initial context that enables us to make sense of their visual templates.
Further, their templates could be characterized as being primarily stage-determined
(“visualizing in groups of the stage number;” “grouping by the stage number;” “x rows
of the stage number;” “A groups of the stage number;” etc.) that they clearly verbalized
during the X3 clinical interviews. Following Neisser (1976) and as demonstrated
consistently in the preceding section, the students’ canonical images relevant to pattern
generalization provided them with a structure or model that they used in processes of
comparing, contrasting, and extending. Overall, they knew that individual patterns consist
of stages that (1) increase or decrease in a particular way and (2) share similar parts or
redundant parts (i.e., variable units) that (3) could then be symbolically captured in some
closed formula.

A primary issue with such a canonical image of patterns is the relative ease in which (1)
and (2) could be accomplished by way of construction and creative imagery but the relative

Gestalt Effect

(Complexity Criterion)

                           Knowledge/Action Effect

Stage-driven Grouping

(Templating; Operation 
Criterion)

Analogy

(Redundancy,
Consistency, and 

Coherence Criterion)
Structural Unit

(Stability Criterion)
Abduction

Variable UnitInduction

Fig. 17 A 3D cognitive model of
a visual template involving pat-
tern generalization
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difficulty in fulfilling (3) due to pattern goodness. Indeed, patterns that are low in Gestalt
goodness require more conceptualization in order to be representationally adequate, which
means to say that an interpreted algebraically useful structure would necessitate more work.
The 11 students were all well aware of the need to produce stages in their patterns that had
parts that were intrinsically good and algebraically useful. Tamara’s failed pattern
generalization relevant to Fig. 16 exemplifies a situation of discord among (1), (2), and
(3). Certainly, her swift decision to shift to a figural pattern that was high in Gestalt
goodness was made possible by her canonical image of a pattern that had to satisfy all three
elements of (1), (2), and (3).

Revisiting the nature of visual templates Tamara’s situation in Fig. 16 also underscores the
incomplete, skeletal, and constructionist nature of visual templates. While such templates
provided my students with useful mental strips and purposeful visual-mode-rated sequences
of actions, I note both the influence of either the content of their inferred assumptions or
prior mathematical knowledge and the necessity of acquiring more pattern-generalizing
strategies that matter in pattern-related actions of focusing (Lobato, Ellis, & Muñoz, 2003),
specializing (Mason, Graham, & Johnston-Wilder, 2005), and figural parsing (Friel &
Markworth, 2009; Rivera & Becker, 2009a; Rivera, 2007, 2009). For example, the three
students (Diana, Emma, and Dung) who produced the triangular pattern in Fig. 9 and
Tamara in the case of her Fig. 16 pattern assumed that any constructed pattern of their
making could be easily captured in symbolic form by simply employing either a
differencing strategy (Orton & Orton, 1999, p. 107) or the use of an inductive table
(Rivera, 2009), which actually becomes very complicated to use in the case of nonlinear
patterns whose direct formulas are polynomials in form.6

Drawing on my experiences with (1) Dung, Emma, and Diana in relation to the Fig. 10
pattern, (2) Tamara and her Fig. 16 pattern, and (3) Cherrie’s pragmatic generalization and
visual justification of the Fig. 9 pattern, students need to know when, how, and why it is
necessary to introduce auxiliary sets or, more generally, employ figural transformations or
what Duval (2006) refers to as the action of figural change in apprehending a (geometric)
figure. Visual actions of moving, reorganizing, and transforming (Liang Chua & Hoyles,
2009; Rivera, 2007, p. 72), including the use of auxiliary sets and figural parsing in this
article, are powerful mathematical ways of inferring a plausible structure on a pattern.
(ESM 11 shows one possible figural transformation of Tamara’s pattern in Fig. 16 that
produces an algebraic generalization.)

Revisiting the Fig. 5 diagram: a 3D visual template model in pattern generalization
activity Figure 17 is a three-dimensional cognitive model of the visual template that I have
drawn from the clinical interviews with the 11 students. It is a refinement of the model
shown in Fig. 5 that I inferred from clinical interviews in two earlier studies I conducted
with preservice elementary majors (Rivera & Becker, 2007) and the cohort 1 students over
two consecutive years of constructivist-driven design experiments on pattern generalization
(Rivera, 2008). Considering the above findings, a more efficient and coordinated visual
template in pattern generalization activity has the following five properties that operate in a
distributed and dynamically embedded manner: structural unit, analogy, stage-driven
grouping, pattern goodness, and knowledge/action effects.

Gestalt effect addresses issues relevant to pattern goodness; it is a basic structural
criterion for algebraic usefulness. Knowledge/action effect is related to prior and

6 ESM 12 shows two numerical approaches in dealing with Tamara’s Fig. 16 pattern.
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available mathematical knowledge (e.g., differencing; the use of inductive-structuring
tables) and figural-related actions (e.g., focusing; specializing; transforming figural
stages) that influence and are influenced by pattern goodness perception. Following
Trudeau and Dixon (2007), such actions “create meaning” and “form relational
representations.”

The dashed line between the two effects symbolically conveys possible shifts in template
processing. For example, the pattern generalizations of Karen and Emma exemplify a shift
from the visual (say, their thinking about Fig. 9) to the pragmatic and then to numerical
(say, their thinking relative to Figs. 2 and 3 tasks). The pattern generalizations of Frank
(say, his work on Fig. 9) and Anna (say, the beginning part of her written work in Fig. 14)
illustrate a route that begins at the opposite end of the spectrum (i.e., using numerical
knowledge).

When pattern goodness is high as in Fig. 9, there is little to no need for either additional
mathematical knowledge or a more elaborate figural action since the stages have a shared
immediate property that could be referred to as a visual pop-out, that is, it has an interpreted
structure that could be done rapidly without effortful scrutiny (cf. Leslie, Xu, Tremoulet, &
Scholl, 1998, p. 11). However, when pattern goodness is low, then additional content
knowledge (e.g., using differencing and inductive-structuring tables shown in ESM 12)
and/or figural action (e.g., Dung’s complex parsing in Fig. 13) would be needed in order to
make an interpreted algebraically useful structure of a pattern become more familiar to the
perceiver. Metzger (2006) notes this as well when he claims that knowledge, experience,
and behavior become “even more decisive factors the less simple the structure of the image
that requires completion” (pp. 136–137). Dung and Diana effectively parsed visually, which
explains their consistent use of visual templates throughout all three tasks. Emma and
Karen in relation to the Fig. 3 task resorted to using their knowledge of numerical
differencing in constructing their CNGs despite their lack of knowledge about a plausible
structure of the pattern. Their failure to justify could be accounted for by their relative
inability to effectively parse the given figural stages.

Structural unit pertains to a perceived interpreted general identity of a pattern within and
across stages. It gives meaning to the variable units that are constructed and addresses
issues of invariance and change. Thus, it addresses the issue of stability of form or shape,
property, attribute, or relationships in a pattern. Analogy addresses redundancy, consistency,
and coherence among parts in a pattern. Stage-driven grouping shapes the content of an
emerging template and, consequently, addresses operations that are used reflective of the
(sequence of) grouping actions that are performed within and across stages. Central to the
triad are the abductive–inductive and symbolic actions that require effective coordination as
well.

The 11 students’ success in pattern generalization (Table 2) involving simple and
complex figural patterns underscores the intricate interconnectedness of the three properties
(or criteria) above, that is, they mutually determine each other. While inspecting for groups
of the stage number in a figural stage is a useful action in developing a structural unit,
performing repetitions of the same action in several more stages assist in establishing
analogical relatedness across stages. Further, what constitutes a structural unit is, of course,
an individual experience, which explains the existence of (at least seven) different forms of
algebraic generalization. For example, the students produced at least three different
structural units relative to the Fig. 9 pattern, and they expressed them symbolically in
different (but equivalent) ways using either an additive or a multiplicative template. Finally,
Gestalt effect introduces a complexity in the implementation of the triad with those low in
pattern goodness requiring more knowledge and/or figural action.
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Revisiting additive, multiplicative, and pragmatic templates While the use of an additive
template in this study produced CNGs, a multiplicative template spawned CNGs, CSGs,
and DGs. Furthermore, sequences of relevant template-driven actions (e.g., the sequence of
CNG, DG, and CSG in the case of Diana relative to the Fig. 2 task; the sequence of DGs in
the case of Dung in Fig. 13) were evident in cases of figural patterns with an inferred
complex structure. I also underscore the inadequacy of an additive template in most cases of
figural patterns that have (subjectively) more complex structures (e.g., Emma’s predicament
in relation to Fig. 10) and the representational power of a multiplicative template in dealing
with (almost) all linear and a few quadratic types of pattern generalization tasks. Finally, the
genesis of pragmatic template use could be traced to either one of the following two
situations, which has been taken into account by the vertical components in the Fig. 17
model: (1) when some students were unable to effectively employ increasingly complex
figural strategies (parsing, transformations, etc.) in order to cope with a pattern that they
found to be low in Gestalt goodness, it then signaled them to explore and shift to a
numerical strategy; or (2) when they began the pattern generalization process using a
numerical strategy (e.g., differencing) and then justified their constructed direct formulas
visually through induction. One common observation among those students who employed
a pragmatic template involves the fragile nature of their justifications. For example, the
justifications that were offered by Cherrie (ESM 11) and Frank above in relation to the
Fig. 9 pattern exemplify a type of inductive reasoning strategy that could be valid in some
cases and invalid otherwise. In most cases of pragmatic template use, the students
performed constructing and justifying an algebraic generalization as two separate activities
with a numerically driven pragmatic template as oftentimes skipping abductive action,
which is central to structure discernment and formation.

7 Conclusion

In this article, I provided empirical evidence that sufficiently illustrates the existence of
additive, multiplicative, and pragmatic templates in pattern generalization activity involving
figural patterns among a group of middle-school learners. However, I underscore the
complicit role of visualization and multiplicative reasoning in developing one systematic
approach to pattern generalization. Perhaps arguable, while prevailing research studies in
patterning activity conducted with younger and older students and adults (teachers) have
articulated in varying degrees the importance of visualization in constructing direct
formulas, the implications of multiplicative reasoning—especially the concept of a unit that
is a unifying concept in algebra—have not been addressed and explored explicitly as one
possible learning trajectory toward the development of students’ pattern generalization
skills. The complexity of coordinated actions that are involved in such trajectory can be
dealt with by addressing the mutually determining (i.e., distributed) relationships between
and among the various components of the visual template model in Fig. 17.

Four issues are worth pursuing further. First, while pattern goodness is not a new
finding, how to assist students to cope with it (e.g., how to perceptually and symbolically
infer an algebraically useful structure) is relatively new. More (large-scale) empirical
investigations on the use of visual strategies and actions like figural transformations (figural
parsing, introduction of auxiliary sets, etc.) and multiplicative reasoning in pattern
generalization are needed to determine their overall effectiveness in resolving this issue.
Again, I emphasize the crucial role of multiplicative (more than additive) schemes in
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pattern generalization with its focus on the concept of a unit that is central in pattern
structure, formation, and discernment. Second, further teaching experiments are needed in
order to generate more visual strategies involving figural transformations beyond those
already discussed in this article. Third, while this article demonstrates the existence and
effectiveness of visual templates in dealing with figural patterns that have linear and
relatively simple quadratic structures, further research is needed in ascertaining the
possibility of visual templates in all figural patterns that have a nonlinear structure. Fourth,
it is interesting to explore consequences of the Fig. 17 model relative to task construction
and, more generally, the teaching and learning of algebra. For example, how can the model
be used to help insert tasks involving pattern generalization into the teaching and learning
of, say, problem solving that target functions and mathematical modeling?
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