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 CONNECTING
 Ferdinand Rivera

 Visualizing as a Mathematical
 Way of Knowing: Understanding
 Figural Generalization

 In the following passage, Willi Dorfler claims
 that if we want to find out what students know

 about, say, patterns, we first need to determine
 how they see and understand patterns:

 The issue for mathematics education ... is what

 does it mean to know something about mathemati
 cal objects and how does the learner develop or
 construct that knowledge? The answer to the ques
 tion will to some extent depend on the ontological
 and epistemological status that is ascribed to those
 mathematical objects. (Dorfler 2002, p. 337)

 Often with patterns such as the ones presented in
 figures 1 and 4, teachers assume that there is only
 one way of producing a generalization that is alge
 braically useful, that is, one that leads to a general

 formula (Lee 1996). However, results of the inter
 views that I conducted with ninth-grade students
 on the pattern sequence in figure 1 show that there
 are at least five possible ways (Becker and Rivera
 2005). Indeed, Dorfler (2002) asserts that how
 students know (i.e., epistemology) and what they
 perceive (i.e., ontology) contributes significantly
 to the manner in which they develop or construct
 their knowledge of a mathematical object. The term
 mathematical object encompasses a variety of con
 ceptual entities such as concepts, images, definitions,
 theorems, figures, diagrams, patterns, and so on. In
 this article, we focus on patterns of figural objects
 (or figural cues). The term figural objects refers to
 objects that possess both spatial properties and con
 ceptual qualities (Fischbein 1993). For example, the
 objects in figure 1 are figural cues, for they have
 been constructed in a particular way. Extending
 them involves inducing an invariant structural prop
 erty that is evident from one cue to the next, and the
 goal of induction is to express the property as a valid
 algebraic generalization.

 I interviewed eleven male and eleven female

 ninth-grade students in a beginning algebra course
 in a public school in Northern California in order
 to assess how they actually established a general
 ization for the tiling squares pattern (fig. 1). The

 motivation behind the interview was a troubling
 finding from a five-year, districtwide, open-ended
 assessment involving patterns and functions: While
 70 percent of ninth graders tested could extend pat
 terns one by one, less than 15 percent of them could
 develop an algebraic generalization in closed form
 (Becker and Rivera 2005). Since 2003, about 60,000
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 Pattern 1  Pattern 2  Pattern 3

 Fig. 1 Tiling Squares problem. From Rivera and Becker 2005

 Fig. 2 Additive property for the Tiling Squares problem

 Fig. 3 Concentric visual counting for the Tiling Squares problem

 students have participated in the assessment. Hence,
 it would be interesting to develop strategies that

 would help students see a Connection between the
 particular and the general in a generalizing activity.
 That is, what are some strategies that enable ninth
 grade students in a beginning algebra course to see
 through the particulars so that they will eventually
 develop algebraically useful generalizations?

 Keeping in mind Dorfler's (2002) claim in the
 quotation above, there is a need to articulate epis
 temological and ontological factors that mutually
 determine ninth-grade students' ability to establish a
 generalization for particular patterns. In this article,
 I first focus on visualization strategies that the stu
 dents in the interview employed as they attempted
 to obtain a generalization for the Tiling Squares
 problem. Then I explore figural-based strategies for
 teaching algebraic generalization and illustrate them
 using the written work of students across grade lev
 els. In the conclusion, I briefly discuss benefits that
 high school students are likely to gain from knowing

 figural generalization strategies in their developing
 mathematical understanding of patterns.

 FIGURAL ADDITIVE STRATEGY
 From interviews with the ninth-grade students, the
 figural additive strategy seems to be the stepping-stone
 visual strategy that students working in a visual mode
 would first employ in expressing a generality. What
 these students saw was an additive growth in the fig
 ural sequence. In fact, it was this invariant property
 that enabled them to connect one figural cue to the
 next (see fig. 2 for an illustration of this strategy).
 Unfortunately, some of them immediately concluded
 that the formula n + 4 was sufficient to describe the

 pattern for the number of black tiles corresponding to
 the recursive formula an+1 = an + 4. Also, those who

 used this strategy alone frequently employed unit
 counting on each figure. For example, pattern 1 in
 figure 2 would be counted as 1, 2, 3, 4, 5; pattern 2
 would be 1, 2, 3, 4, 5, 6, 7, 8, 9; and so on.

 TWO FIGURAL MULTIPLICATIVE STRATEGIES
 Counting by "Sides"
 Some students saw symmetry among the figural
 cues. For example, Edward (all student names used
 in this article are pseudonyms) counted each "side"
 of the black square tile pattern and multiplied by 4,
 since there were four arms altogether:

 I looked at pattern 3 and I saw the ... three tiles
 that are on each side so I thought I looked at pat
 tern 2 and it just added one so I multiplied four
 times four with all the sides and just added one
 in the middle [for pattern 4].

 This figural multiplicative strategy suggests the fol
 lowing formula: wx4 + 1, where n means pattern
 number. Edward and those students who figurally
 multiplied did not employ unit counting of tiles,
 since they were thinking in multiples of one "side"
 (or "pillar" or "arm") of a figural cue.

 Concentric Visual Counting
 Some students employed concentric visual counting.
 That is, they saw the black square tiles in pattern n
 as embedded in the black tiles in pattern n + 1. This
 strategy suggests the following formula: (n - 1) x 4 + 5,

 where n means pattern number. The formula is illus
 trated in figure 3. Note that the coefficient 4 in the

 formula represents the repeated addition of one square
 on each arm beginning with pattern 2.

 PUTTING VISUALIZATION STRATEGIES
 BACK IN THE LEARNING OF BASIC ALGEBRA
 While it was evident that figural strategies were
 used by some of the ninth-grade students I inter
 viewed, the most favored strategy was numerical
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 (e.g., using the method of finite differences, using
 trial and error). Students who used a numerical
 strategy became exclusively occupied with manipu
 lating numbers and testing them against a formula
 that had been derived numerically. Consider Jen
 nifer's construction of the formula 4rc + 1 using a
 numerical guess-and-check strategy:

 I started off with more like 2 and that didn't
 work so then I tried to make 5 work and I did

 the same thing with 2, 3 ... and then when I
 tried it with 4, and I tried to figure a number to

 make 5 so I add 1, and I tried it on 2 and it still
 gave me the number.

 Even though she was able to come up with the
 correct formula, she was not able to explain what
 the numbers 4 and 1 stood for in her formula. If

 we compare Jennifer's numerical method with
 Edward's visual construction in the following pas
 sage, we can certainly justify the usefulness and the
 power of visualization in establishing meaningful
 algebraic generalizations:

 [To find the number of black tiles for pattern 10] I
 counted the tiles going out, um, so it would be 10.
 So 10 times 4 'cause [there are] 4 sides. It's um 40
 plus 1 for the one in the middle, so that's 41.

 For Edward, all the symbols leading to the formula
 4^+1 have been associated with meanings that
 have a direct correspondence to the figural cues
 that produced them.

 So how do we promote algebraic generalization
 via the visualization route? First, we need to remind
 ourselves that patterns as mathematical objects are
 not everyday objects. The difficulty faced by many
 students who struggle to form generalizations is that,
 for them, patterns involving figural cues appear to be
 mere drawings. Thus, the ability to notice effectively
 and to see an algebraically useful pattern from the
 figures will have to be developed first.

 Duval's (1998) theory of apprehending a fig
 ure in geometry is useful in talking about figural
 cues in algebra. Learners apprehend figural cues
 in two ways: perceptually and discursively. On
 the one hand, when students such as Jennifer are
 only able to apprehend figural cues perceptually,
 they see the cues as primarily consisting of objects
 (e.g., squares) that continually increase or decrease
 by a fixed amount and nothing more. One subtle
 indication of this perceptual apprehension is when
 students shift their attention away from the visual
 cues and begin to focus exclusively on the cor
 responding numerical cues in order to establish a
 generalization. On the other hand, when students
 such as Edward are able to apprehend figural cues

 Pattern 1 Pattern 2 Pattern 3

 Fig. 4 Tile H pattern. From Roebuck 2005

 1. Describe what you see.
 2. How is the pattern growing?
 3. As each figure grows from pattern to pattern, what changes

 and what stays the same?
 4. How many tiles stay the same from one pattern to the next?

 Show this. (This refers to the constant b in the linear form y =
 mx + b.)

 5. How many tiles have been added from pattern 1 to pattern 2?
 From pattern 2 to pattern 3? How many tiles would be added
 in the case of pattern 4? Show this.

 6. Is there a relationship between pattern number and the num
 ber of tiles that has been added?

 7. How many tiles have been added in pattern 2? Do you see
 multiples of this number pf added tiles in pattern 3? In pattern
 4? Show this. (This refers to the coefficient m in the linear
 form y = mx + b.)

 8. If P represents pattern number and S represents the total num
 ber of tiles for any given P, find a direct formula that relates S

 and P. Explain what your formula means from the figures.

 Fig. 5 Guide questions for the tile H pattern

 ^Hd -Vne.extm oL'a^he^ Sides qS-: 4te mricf/^
 Fig. 6 Written work of Dan and Marlisha on the tile H pattern
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 Sool |o|o|o|o|o|
 Pyramid 1 Pyramid 2 Pyramid 3

 Fig. 7 Pyramid cans pattern. From Sasman, Olivier, and Linchevski 1999

 Pyramid 5  Pyramid 6

 al = 4: a2 = 12  a3 = 24

 Fig. 8 Array of sticks pattern. From Billstein, Libeskind,
 and Lott 2007

 m cm rrm ...
 12 3 4

 Fig. 9 Transformed pyramid cans pattern

 discursively, they see the cues?either individually
 or in relation to one another?as a configuration
 of objects (e.g., squares) that are related by some
 invariant attribute or property. Thus, it seems
 reasonable to accomplish as a first step an assess
 ment of whether students are apprehending a given
 figural sequence perceptually or discursively before

 we ask them to come up with a general formula.
 Working with a class of sixth-grade students, I

 presented the tile H pattern in figure 4 as a begin
 ning activity for them to develop a discursive appre
 hension of figural cues. The accompanying ques
 tions in figure 5 can be used to uncover possible
 attributes or relationships among the cues from a
 visual perspective. Also, since I wanted students to
 establish a function-based direct (or closed) formula
 involving two variables, I had to assist them in tran
 sitioning from a figural additive mode to a figural

 multiplicative mode of generalizing. Figure 6 pres
 ents solutions of two students in the class who devel

 oped the formula S = P x 5 + 2 and includes their
 explanation of what each number in the formula
 meant. In both of their solutions, Dan and Marlisha

 saw two properties that stayed the same: (1) the two
 corner squares in the middle row; (2) the growing
 multiples of five squares from one cue to the next.

 Even if students are able to acquire the ability to
 apprehend figural cues discursively, we need to take
 into account the complexity of the cues. Sasman,
 Olivier, and Linchevski (1999) make a distinction
 between transparent and nontransparent figural
 sequences. In the case of transparent figural cues,
 such as the tile H pattern, students can determine the
 appropriate function rules because they are embod
 ied in the structure of the figures, which cannot be

 claimed in the case of nontransparent figures. For
 example, the figural sequence in figure 7 is nontrans
 parent. Also, function rules for some transparent
 figural sequences (such as the tile H pattern) can be
 obtained rather easily, while the task can be daunt
 ing in the case of more complicated figural sequences,
 such as the array of sticks pattern in figure 8. In the
 case of nontransparent sequences, something more
 needs to be done before students are able to see a pos
 sible function rule from the available cues.

 One possible suggestion in dealing with non
 transparent figural patterns is to encourage stu
 dents to further manipulate or transform figural
 cues into simpler, recognizable forms. When stu
 dents are able to perform such transformations
 either visually or mentally on a figural sequence,
 they manifest a figural change in their apprehen
 sion of the figures (Duval 1998). For example, the
 pyramid cans in figure 7 can be moved, reorga
 nized, and transformed into a figural sequence of
 nxn unit squares (see fig. 9).

 Another way of dealing with some nontrans
 parent patterns involves a symmetrical counting
 process. To encourage symmetrical counting, ask
 students first to look for any presence of symmetry.
 Then ask them to perform a counting action on one
 part, A, of a figural cue and apply the same action
 on those relevant parts of the cue that have the
 same characteristic(s) as A. It is interesting to think
 that there is harmony and beauty within a given
 figural sequence; thus, symmetry can be present
 as well and should be exploited in order to avoid
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 unnecessary repetitive counting (Zeitz 1999, p. 70).
 Examples of symmetrical counting solutions are

 shown in figures 10, 11, and 12, which illustrate
 the visual reasoning of three prospective K-8 teach
 ers on the array of sticks pattern (fig. 8). Amanda's
 work (fig. 10) reveals seeing cues that have a con
 figuration of three symmetries: horizontal sticks,
 vertical sticks, and outside sticks. Kevin initially saw
 figural cues that consisted of rows and columns of
 matchsticks (fig. 11). Hence, pattern 1 has one row
 with 2 vertical matchsticks and one column with 2

 horizontal matchsticks, pattern 2 has two rows with
 3 vertical matchsticks and two columns with 3 hori

 zontal matchsticks, and so on. Martha also saw rows
 and columns of matchsticks as Kevin did, but she
 counted in a different way (fig. 12). For her, pattern
 1 has two rows with 1 horizontal matchstick per
 row and two columns with 1 vertical matchstick per
 column, pattern 2 has three rows with 2 horizontal
 matchsticks per row and three columns with 2 verti
 cal matchsticks per column, and so on.

 CONCLUSION: FROM VISUALIZATION
 TO ALGEBRAIC GENERALIZATION

 When we focus on visualization, we are facing a
 strong discrepancy between the common way to
 see the figures, generally in an iconic way, and the

 mathematical way they are expected to be looked
 at. There are many ways of "seeing." (Duval
 2006, p. 115)

 Principles and Standards for School Mathematics
 (NCTM 2000) strongly recommends incorporating
 visualization strategies in students' mathematical
 experiences across content areas. But this is not an
 easy resolve, since, as Duval (2006) points out in
 the quotation above, students' acts of noticing and
 observing patterns may not even be mathematical
 but may instead follow conventional practices. Fur
 ther, the difficulty with seeing is complicated by the
 fact that some students have already developed the
 misconception that mathematics is all about manip
 ulating numbers and numerical expressions and
 applying algorithms?a misconception that could
 make the task of visualizing tenuous and rather
 unnecessary for them. In particular, in the inter
 views that I conducted with the twenty-two ninth
 graders, many of those who employed numerical
 methods for generalizing were able to establish a
 formula for the tiling squares pattern from avail
 able numerical cues. Hence, they saw no need to
 visualize. However, they were unable to justify the
 formula and its parts.

 So what benefits do students derive from

 developing a good visual comprehension of pat
 terns? First, establishing patterns figurally would
 encourage students to see the dynamic (versus

 static) component of conceptual construction of
 mathematical objects and concepts, in particular,
 pattern objects (designs) in daily life. For example,
 a visual understanding of linear pattern formation
 would help them understand?and, one hopes,
 appreciate?the important role of the slope m in
 the formula y = mx + b, including the implications
 of the restricted domain (whole numbers) in the
 corresponding graph of the pattern. Illustrative
 examples are presented in figure 13. In the first
 task, students consider the effects of the changing
 values of m, the slope, in forming pattern sequences
 that either grow (or increase, m > 0), decay (or

 each n*n squate, ^ere cut * c*rW - of horizon**
 and bribes. X SduJ ttuue OfC X rximoCf ot SHc^S
 rur\rAr^in each direction per column, and M^.ere art,
 huurber o+ cdiumn^ in each direction. uJhen X coonk?lr\c
 bo4*> direction, X ge^ x(x-f> for han?, arj for >jprte*f
 i^WiC^ S*6<-0. 1>> . number (U4si^ SHcks *S a'M^S

 Fig. 10 Visual reasoning of Amanda on the array of sticks pattern

 QJDDLLLU
 OJJ 2 +

 fmte if* " "I""- *J*

 Fig. 11 Visual reasoning of Kevin on the array of sticks pattern

 3?n'(nf0
 ?r?. i? ??**?r*w

 - ?**?ft??p<3 **t fry 2

 Fig. 12 Visual reasoning of Martha on the array of sticks pattern
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 l.(a) The pattern sequence of circles below has
 a growth rate of 2 (i.e., ra = 2). Explain why it is
 so. Also, describe the pattern algebraically (i.e.,
 find a direct formula).

 (b) Construct a pattern sequence of squares
 (having at least three cases) of the form y =

 rax + b, where (i) ra > 0, (ii) m < 0, and (iii)
 ra = 0. Assume ra, x, y, and b are all integers.
 Also, describe each sequence algebraically.

 (c) Based on the results you obtained in tasks
 (a) and (b) above, how can you tell if a numeri
 cal or a figural pattern sequence is increasing, is
 decreasing, or stays the same?

 (d) Construct a table of values for the pattern

 sequence of circles given in (a) above and then
 graph. What labels would correspond to the first col
 umn or the x-axis? the second column or the #-axis?
 Describe your graph and state the domain and range.

 (e) Construct a table of values for the pattern
 sequence of squares you obtained in item (b) (ii)
 above and then graph. Label your first column
 values and the x-axis. Do the same for the sec

 ond column values and the y-axis. Describe your
 graph and state the domain and range.

 2. The following problem requires some artistic
 imagination: Suppose a certain design company
 has asked you to design square tile patterns, with
 some constraints. They want two kinds of linear
 pattern sequences of square tiles that obey the rule
 y = rax + b, where ra, x, y, and b are all positive
 integers and where the first type has an even slope
 and the second type has an odd slope. Do it now.
 Next, compare the two pattern sequences you cre
 ated. Make at least two observations.

 Fig. 13 Visualization activities that explore slopes in relation to pattern construction

 1. Below are two formulas for a pattern sequence of squares formed from matchsticks^

 M=3P+1
 M=4P-(P-l),

 where P means pattern number and M refers to the total number of matchsticks. Show that these
 formulas describe the same pattern.

 2. Fill in the table below.

 Pattern 1  Pattern 2  Pattern 3

 Pattern Number (P)  10  20  117

 Total Number of Circles (T)

 3. Three students came up with the following formulas for the table above:
 Angelina: T= (2P+ 1) +P
 Rhea:T=3(P+l)-2

 Maria: T=(4P+1)-P

 (a) Explain how each student arrived at her formula.
 (b) Rochelle came up with the following formula: T=3P+1. How might she be thinking about her formula?
 (c) Which student's formula is correct? Explain.

 Fig. 14 Additional visualization activities that target equivalence
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 decrease, m < 0), or remain fixed (or constant, m =
 0). In the second task, students explore the symme
 try design of figural sequences by investigating the
 effect of the slope m in pattern construction. As an
 aside, I would strongly recommend that the tasks
 be explored in a group setting using manipulatives
 such as colored square tiles, circle chips, pattern
 blocks, or unit cubes.

 Second, generalizing visually oftentimes pro
 duces several different formulas for the same

 pattern, which could not be accomplished if gen
 eralizing were done using a numerical method.
 Such a productive situation naturally extends the
 discussion to the meaning of equivalent expressions
 and formulas in mathematics, including why such
 a notion exists in the first place. Examples of tasks
 that focus on equivalence are presented in figure
 14. Students visually explore the equivalence con
 cept either by setting up figural cues (task 1) or by
 analyzing a given figural sequence (task 2).

 Finally, fostering visualization in school algebra
 articulates the most important description we have
 about algebra in contemporary times?that is, algebra
 as the symbolic medium that provides the systematic
 means to establishing, constructing, and justifying
 invariant structures and relationships among mathe

 matical objects. Such a medium, by institutional prac
 tice and as a consequence of its historical evolution,
 has been narrowly interpreted in our classrooms as
 being primarily about manipulating variables and
 expressions. Visualization in algebra offers an alter
 native way to understand structures and relation
 ships that necessitate the use of variables.

 A unifying thread connecting all the general
 izing activities in this article is the use of algebra
 as a tool for expressing relationships or for finding
 invariant structures across cues by enhancing the
 learning of visualization strategies at the same time.

 Preparation of this article was supported by a
 grant from the National Science Foundation, grant
 #0448649. The opinions expressed do not necessar
 ily reflect the views of the foundation.

 Also, the analysis of the interviews with the
 ninth-grade students that is cited in several locations
 in this article was conducted with J. R. Becker.
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