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 F. D. Rivera and
 Joanne Rossi Becker

 ALGEBRAIC
 î ¡J i l'% %.. " ё 1 ì%, :i ! r% H f

 THROUGH
 PATTERNS

 Findings, insights, and issues drawn from
 a three-year study on patterns are intended

 to help teach prealgebra and algebra.

 S^Wing students' performance on
 'IJgtterning tasks involving prealgebra

 and algebra produced some troubling
 ítófoígis, which we will describe in
 Uns article.

 Both the qualitative information
 (student work) and quantitative data
 (grade-level scores) that we obtained
 and analyzed from 1998 to 2006
 through the Mathematics Assess-
 ment Resource Service involved thirty
 school districts in northern California.

 Less than 20 percent of the students
 tested were proficient in establishing

 an algebraic generalization for figurai

 patterns, such as that in figure 1. By
 algebraic generalization of a pattern,

 we refer to this explanation by Rad-
 ford(2008,p. 115):

 [Students] capability of grasping

 a commonality noticed on some

 particulars (in a sequence); extending

 or generalizing this commonality to

 all subsequent terms; and being able

 to use the commonality to provide a

 direct expression of any term of the

 sequence.

 We extend Radforďs (2008) com-
 ments to include the necessity of

 justification at the middle school
 level. In other words, students have

 to provide some kind of explanation
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 ^^^^^^^^^^^^^^^н

 о оо ооо оооо
 Step I Step 2 Step 3 Step 4

 You are now going to write a message to an imaginary Grade 6 student
 clearly explaining what she or he must do in order to find out how many
 circles there are in any given figure of the sequence.

 Shawna: First you check the figure number, which is the bottom row. Then the
 vertical you minus one and then you add them together. Then the answer is
 what you got.

 Dung: You can find out how many pieces are in any figure by looking at what
 number figure it is. Then on the bottom row it should have how many spaces the
 figure number is. The top column should be one less than the figure number.

 Find a formula to calculate the number of circles in the figure number "n."

 Dung: Figure n = bottom row pieces. N is how many numbers are on the
 bottom.

 Column = n - 1

 Figure N + n - 1 = how many pieces.

 that their algebraic generalization is
 valid by a visual demonstration that

 provides insights into why they think

 their generalization is true (cf. Knuth

 2002, p. 488). We use the term pattern
 generalization to convey both math-
 ematical practices of construction and
 justification of direct formulas.

 In year 1, a patterning activity was

 used to strengthen the students' profi-

 ciency with operations on integers and

 basic equation solving, with a begin-

 ning emphasis on increasing patterns.
 In year 2, a patterning activity was

 extended to both increasing and de-
 creasing patterns. In year 3, students

 learned about polynomial expressions
 and operations, up to multiplication.
 The patterning activity then focused

 on the construction of equivalent

 direct formulas and later provided the
 context in which to discuss functions

 and relevant concepts (domain, range,

 graph) and processes (linear function
 modeling).

 In the remainder of the article, we

 take a more global view of the three-
 year study on pattern generalization
 and focus on what we learned with

 an eye to describing the mathemati-

 cal content knowledge for teaching
 (MKT). Stylianides and Ball point
 out that MKT pertains to those "par-
 ticular forms of mathematical knowl-

 edge that is useful for, and usable
 in, the work that teachers do as they
 teach mathematics to their students'*

 (2008, p. 308). The content and sug-
 gestions that we pursue here have

 been rooted in our experiences with
 typical students that most teachers
 encounter daily in their classes.

 LIMITED-ACCESS

 PATTERN ISSUES
 Think for a moment about how we

 know when our students are at the

 crucial stage of generalizing in pat-
 terning activity. Perhaps we have the

 view that generalizing and inductive

 reasoning fall under the same category.

 Dreyfus, for instance, characterizes

 generalizing as "deriving or inducing
 from particulars, identifying com-
 monalities, and expanding domains
 of validity to include large classes of

 cases" (1991, p. 35). Why do such
 actions appear to be easier said than
 done? In addition, pattern general-
 izing on the basis of three or four

 initial stages can be problematic. For
 example, different ways of extend-
 ing the sequence {1, 2, 4, . . .} would
 influence the content of the corre-

 sponding algebraic generalization.
 Students who have no formal

 experiences in the symbolic system

 of algebra 1 are naturally expected to
 express their generalizations in words.

 Take, for example, the prealgebraic
 mathematical proficiency of Shawna

 and Dung, sixth graders in year 1, who

 are given the pattern in figure 1, and

 whose responses are in figure 2. Before
 taking part in a teaching experiment
 on generalization, they showed basic

 competence in whole-number opera-
 tions and relative success in evaluating

 simple algebraic expressions (e.g., if
 a = 2 and b - 3, then 2a + b = ?). When

 they were asked to write a message
 that conveyed their generalization for
 the circles pattern, their generaliza-
 tions involved words or a combina-

 tion of words and variables. Although
 Shawna used words, Dung's message
 contained the variable n that made

 sense only within the context of his

 entire response. Both students, how-
 ever, were quite close to an algebraic
 generalization so that formal
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 ■ мЛЕЯЯЯяЯЯаМшЯДШДНпкиЯиИЯяВям

 Some Background on Our Study
 This study explores students' multirepresentational practices

 when they develop an algebraic generalization for pattern
 sequences that have either numerical or figurai stages. In
 all three years of the study, the second author conducted
 the pre- and postclinical interviews with the students. The

 first author designed and implemented classroom teaching
 experiments on pattern generalization while working with
 classroom teachers.

 Each teaching experiment lasted twelve consecutive
 weeks and often occurred within the context of a big math-

 ematical idea or unifying strand. Table 1 shows the general
 content flow that allowed the first author to pursue pattern
 generalization in all three years of the study in light of the

 existing constraints of the school (state ^^^
 standards, department and classroom ^^^^b
 practices, pacing guides, bench- ^^^V
 mark assessments, and so on). ^^ ^^У^ ^т

 Part of the success in Ш H^tf^^b^b. ^Р
 implementing the teaching Ж1&^^^^^^^^^ WĚ
 experiments resulted from ^^Jp^NJ|^^^^^^^^^^4K
 the regular weekly plan- ШШШшВ^^^^^^^Шшш
 ning time that occurred ^^ШЕЕЕШЕ^^^^^^ШЕ^Ш
 between the first author Г^вВШЦ^^^^^^^^^^И
 and the classroom teach- f а^Ш|ШШ|^^^^^^^^^^^|
 ers. Often, the discussion |,|Н§ШЦ1^^^^^^^^^^Н
 involved findings drawn ' «¡ЩЁШЯ^^^^^^^и ^^|
 from ongoing assess- Ш^ШШЯ^^^^^^^^Ш^^Ж
 ments and ways to тШ^^^^^^^^^^^^^Ж HP
 further refine the les- ^^^^^^^^I^^H^^^B ~~ %
 sons so that students ^^^^^^^^H^^^V ^^^H I
 achieve the learning ^^^^^H ^^H ^^^H Ц
 goals and objectives of ^^^^Ш ^^Ш ^^Н

 the experiments. The original group of student-participants

 was in the same class together only during years 1 and 2 of
 the study. In year 3, fifteen were kept together and mixed with

 a group of seventh and eighth graders. The new group then
 pursued the recommended California standards for algebra 1.

 A majority of the student-participants in both groups
 were Asian Americans; a small number were Caucasian, Af-

 rican American, and Hispanic. We also note that the begin-
 ning mathematical proficiency levels of the students in the

 original group fell under the basic and below categories. In
 year 3, although all the students were proficient and above

 in prealgebra, a preassessment clearly showed significant

 differences in terms of their ability to generalize patterns in

 favor of the old group. Considering the preassessment find-

 ^^^ ings and anticipating the
 _ ^K^H conceptual requirements

 Ь шЯ^^ тш^У of formula construction,
 II iv^ 1Ш дРГ the first author and
 l^^^^jSg^^^ePla^ the grade 8 teacher
 о^^^^^^НР^^^^^Н^нВшШ decided to ground
 ^^^^^^^^^^^^^ШшШВШЕш tne students' initial
 ^^^^^Р^^^^^МнНИн^ННш common alge-
 ^^^^f ^^^^Hf иДНДЯ^^ШЬгак experiences
 ^^^^Ш ^^^^^Ш [ВНВ^Н^^^Г on P°lynomials
 ^^^^A^^^^^V M,ii!iSl^^^BLh an<^ P°tynomial
 ^^^^^K^^^^f flSHKilHHL °Perati°ns> which
 ^^Hl'; , шЕ^ЯшЕшЕ^^^^Е actually made
 ^^^j v шШщвВ&*Яв sense in ^^it °^
 ^t Î |T I l" WP" their experiences
 ж J *i' 1 1 with integers and
 WL -j I v 1 m integer operations.

 lÌLÌtl -j m 1. '.

 Mages ьетоге leaching experiment Actual Teaching Experiment After Teaching Experiment

 Year 1 (sixth-grade math) Integers and integer op- Linear pattern generalization Point plotting, rational
 erations using binary chips, (increasing patterns) numbers
 properties of integers

 Year 2 (seventh-grade Integer and integer op- Linear pattern generalization Rational numbers, positive
 prealgebra) erations on a number nine, (increasing and decreasing and negative slopes, graph-

 properties of integers patterns ing lines

 Year 3 (eighth-grade Integers and exponents, Linear pattern generaliza- Functions (domain, range,
 algebra 1) polynomials and polynomial tion, construction and justi- graph), linear functions,

 operations and properties fication of equivalent direct slopes (positive and nega-
 (up to multiplication) using formulas tive, zero, undefined,
 AlgeBlocks® fractional)
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 You are now going to write a
 message to an imaginary Grade б
 student clearly explaining what she
 or he must do in order to find out

 how many circles there are in any
 given figure of the sequence.

 Jenna: By using the pattern and
 the pattern is (on top) 0, 1, 2, 3.

 John had $37 before he earned $10 for delivering newspapers one Monday.
 The same day, he spent $2 for an ice cream cone. Tuesday, he visited his
 grandmother and earned $5 for washing her car. Wednesday, he earned $5
 for baby sitting. On Friday, he spent $2.75 for a hamburger and fries and $3
 for a magazine.

 A typical arrow-string solution of this problem is shown below.

 + $10 -$2 +$5 +$5 -$2.75 -$3
 $37 - » $47 - > $45 - > $50 - > $55 - > $52.25 - > $49.25

 Source: MiC Development Team 2003, p. 3

 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^H

 The Rainbow Cab Company charged fares based on the distance traveled.
 Also, the starting amount was $2 and the price for each mile was $2.50.
 Decide and justify which arrow formula would yield the correct fare.

 x $2.50 + $2.00

 No. of miles

 + number of miles x $2.50

 $2.00 - ■

 + $2.00 x$1.50

 No. of miles

 Source: Adapted from the MiC Development Team 2003, p. 17

 instruction involving variables to

 express relationships was apt to be
 fruitful.

 Figure 3 shows the pattern gener-
 alization of Jenna, sixth grader in year

 1, in relation to the circles pattern. She

 imagined her pattern to be increasing

 in a particular way. Specifically, she
 saw that the number of circles on each

 row in the pattern corresponded to the

 step number and then assumed that
 the number of column-circles oscil-

 lated from 0 to 3 over a cycle of four

 steps. She then used the same struc-

 ture in extending the pattern from

 stages 5 through 8. Her written mes-

 sage reflected what she saw and inter-

 preted to be her generalization of the

 pattern. It is an acceptable response,
 despite the fact that it is difficult to
 establish a direct formula.

 We assume that when we ask our

 students to generalize, the result has

 to take the form of a direct formula

 (i.e., an equation in function form).

 For example, when Shawna, Dung,
 and Jenna were asked to generalize the

 same circles pattern at the end of the

 teaching experiment in year 1, their re-

 sponses took the form ofC=«x2 - 1,
 where С refers to the total number of

 circles and n the stage number. They

 justified their formula numerically in

 the context of a table, which they saw

 as consisting of ordered pairs whose

 dependent terms consistently increased
 by two circles. Frank, sixth grader,

 justified the same formula when he
 claimed that he saw each stage in the

 pattern as "doubling a row and minus-

 ing a chip," which we consider to be a
 type of visual justification.

 CONSTRUCTING
 DIRECT FORMULAS

 The initial teaching experiment that

 helped the year 1 students gain their

 ability to write direct formulas has

 been drawn from several algebra
 units of the Mathematics in Context

 (MiC) curriculum. For example, in
 Expressions and Formulas (MiC Devel-
 opment Team 2003), arithmetical
 operations using arrow strings were
 investigated. Many contextual prob-
 lems were solved using arrow strings

 before any kind of generalization was
 introduced (see fig. 4). Then students
 generalized invariant relationships us-
 ing arrow strings (see fig. 5).

 Finally, patterns that initially con-
 sisted of figurai and numerical stages

 were given, and students were asked
 to do the following:

 1. Generalize regularities and replace
 numbers with variables and arrows

 with the appropriate symbols (op-
 eration, equal sign);

 2. Establish and justify visually; and
 3. Establish generalizations numerically.

 Overall, a careful sequencing and dis-
 cussion of problems such as those in
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 figures 4 and 5 helped students move
 to a formal symbolic representation of

 linear patterns.

 In years 1 and 2, the students

 generalized numerically and visu-
 ally. In year 2, they learned about

 the coordinate system that enabled
 them to make sense of linear patterns

 graphically. The numerical generaliza-

 tion strategy, which the first group

 developed in class in year 1, reflected

 the mathematical practice of com-
 mon differences. That is, they would

 initially set up a two-column (or
 two-row) table. From the table, they
 would then obtain a common differ-

 ence among the dependent terms. It

 conveyed to them the need to set up a
 direct formula following A = nx В + С,

 where n represents the stage number

 in a pattern, A the outcome or total,
 В the common difference, and С the

 constant amount needed to completely
 match the dependent terms.

 However, we noticed that as

 students became more competent in
 obtaining direct formulas for both in-

 creasing and decreasing linear patterns,
 their ability to justify their formulas

 weakened over time. Many of them
 confused justification with construc-

 tion, using the common difference
 method. Further, few students could

 offer different equivalent formulas for

 the same pattern because the numeri-
 cal strategy showed them only one
 route to constructing a direct for-

 mula. Among those who consistently
 generalized visually, construction and

 justification of a direct expression were

 seen as mutually related. For example,
 Franks visual perception of the gen-
 eral structure of the circles pattern as

 involving the "doubling of a row and

 minusing a chip" was his way of justi-

 fying his formula С = n x 2 - 1.

 In year 3, the first group oriented
 the new to the common difference

 method as described above. Both

 groups also used a visual grouping
 approach, which is discussed in some

 detail later in this article. At this

 stage, it is necessary to address the

 issue of how it is possible to perform
 pattern generalization on the basis of
 an incomplete set of particular stages.

 We accomplish this through Peirce's
 (1958) notion of abduction.

 PATTERN ASSUMPTIONS

 When we infer something about a
 phenomenon whose totality we can
 never fully grasp, we go through two

 complementary stages that Peirce
 (1958) refers to as abductive and

 inductive reasoning. Abductive reason-
 ing involves forming a reasonable

 hypothesis about the phenomenon. To
 form that hypothesis, we verify and

 test the abduced hypothesis several
 times to see whether it makes sense.

 When doctors perform an assessment
 or when jurists analyze a case with

 incomplete data, the preparatory stage
 in developing an inference involves

 abduction. When generalizing a
 pattern on the basis of a few known
 initial stages, we need to pay atten-
 tion to how abduction and induction

 can be used together to construct and

 justify a complete and valid algebraic

 generalization (Rivera 2008). Fol-
 lowing Peirce, abduction as a concept
 exists and is used only in relation to

 induction. Thus, a complete pattern
 generalization involves complemen-
 tary acts of abduction and induction

 and, of course, justification.

 Why Should We Be
 Interested in Abduction?

 Any pattern generalization makes
 sense but only in the context of an

 interpreted structure that we initially

 abduce from the given initial stages.

 In fact, the extended stages (both near

 and far generalizations) depend on this
 necessary abductive step. Induction is
 used to verify the relevant abduction

 of the known and extended stages. For

 example, Shawna, Dung, and Frank
 abduced linear growth in the case

 of the circles pattern, whereas Jenna

 abduced growth in a different way.

 From this perspective, mathemati-
 cians and scientists work the same way.

 For example, when mathematicians
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 In Your Classroom^WMSP
 Students benefit from having both visual and numerical modes of generaliz-

 ing. An effective way of helping them develop both modes is to let them share
 and critique one another's generalization strategies. Teachers first need to set

 up a safe classroom environment in which students are fully aware that they
 can generate their own solution processes in relation to a task and that sharing
 their work with others signals ownership of the task. One useful norm that
 should be frequently discussed in class deals with the possibility that at least

 one student will always have access to a more sophisticated or a more efficient

 solution or strategy than the ones that are offered (Rasmussen, Yackel, and
 King 2003).

 An interesting way to facilitate the norm discussed above is to show sam-
 ples of student work, then allow them to discuss the advantages and disadvan-
 tages of each. For example, students can be asked to analyze the work of other

 students. Different solutions or strategies can be posted in several parts of the
 classroom. Students visit each part, take notes, and then share their learning

 either within the context of a group or the entire class.
 Closure is an important phase. The teacher should solicit a synthesis of

 different approaches and offer a different approach, especially when intended
 content needs to be shared.
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 Find three mathematical expressions that will help you find the total number
 of circles without counting them one by one. Examples of expressions are
 3x4 and 2x5-3. Explain why each of your expressions makes sense by
 showing it in separate copy of the same figure below.

 (a)

 5x4 2x12-4

 (b)

 develop a model of a particular phe-
 nomenon, they initially make assump-
 tions or hypotheses (abductions) on the

 basis of what they know about the phe-

 nomenon at the time. Then they test

 them repeatedly (induction) and prove

 (using rigorous deductive techniques or
 a computer verification of an extremely

 large set of cases). Of course, among
 middle school students, justification is
 relative to their level of mathematical

 experiences.

 Hence, the first thing we need

 our students to consider when they
 are confronted with a patterning task
 is how to generate viable, accept-
 able, and reasonable abductions that

 could potentially lead to an algebraic
 generalization that could be justi-

 fied. From our experiences, multiple
 abductions could lead to multiple
 generalizations of the same pattern.
 The three scaffolding questions below
 help students develop and articulate

 a possible abductive structure for any
 given pattern:

 1. How might you extend this pat-
 tern? Why extend it that way?

 2. What stays the same and what
 changes in your pattern?

 3. Is there another way to extend the
 pattern? How so?

 Question 1 provides the necessary
 initial abductive reflection; question 2
 focuses on an explicit articulation of a

 structure. Question 3 is meant to bring
 to the surface other plausible, and

 possibly equivalent, abductive claims.
 Thus, structure sense and what is

 eventually generalized are both relative

 to the abductions they find meaningful
 to pursue.

 GENERALIZING THROUGH
 COUNTING

 In the case of increasing patterns,
 students often begin with an additive-

 based generalization. For example, the
 pre-instructional clinical interview

 with Shawna in year 1 in relation to
 the circles pattern indicates that she

 initially saw the particular stages to be
 each increasing by two circles. With

 more scaffolding from the second
 author (interviewer), her written

 response in figure 2 reflected a deeper
 understanding of an interpreted
 structure while remaining additive in
 overall form (i.e., adding the row and
 column circles).

 On the basis of our data, additive

 thinking in pattern generalization is
 of two types:

 • Type 1: Students initially formulate
 a surface-based next-to-current

 relationship, typically expressed in
 the generic response "add хГ

 • Type 2: Students may be so preoc-
 cupied with obtaining the total

 number of objects per stage num-
 ber through counting one by one
 that they fail to notice a possible

 structure within a pattern stage or

 among two or more stages.

 Hence, teachers need to implement
 activities that explicitly foster count-

 ing by groups or, more formally, mul-

 tiplicative thinking. The place to start

 is when students learn the concept of
 multiplication of integers, in which

 a*¿> = ¿> + b + e+---+¿?

 a times

 is the same as a copies (or groups) of b.

 In the activity in figure 6a, for
 example, ask students to obtain
 several different ways of counting the
 total number of circles and express
 their answers in multiplicative form.

 Examples of possible approaches to
 counting the circles are illustrated in

 figure 6b. A good follow-up activity
 involves asking students to consis-

 218 MATHEMATICS TEACHING IN THE MIDDLE SCHOOL • Vol. 15, No. 4, November 2009

This content downloaded from 130.65.109.155 on Sun, 15 May 2016 06:28:50 UTC
All use subject to http://about.jstor.org/terms



 I шТ^л^^^^^11^^^н1^^^^^^В^Э9^^^б^^Э^^9^^^^^^^|^^^^^^К^^к1^н^^^^^^^^^^^^^^^5Е^^н^в^^^^^^^|||^^^^^

 Consider the pattern sequence below, n^^^ 5 ~TT] Consider the pattern sequence below.
 Го/ о О О

 ^ +-^-А /SI loi To 1 ]o "1 о о о о о +-^-А i с->/ о о о о о о

 Ld о Loo! о о о о, о5о
 ? ?. £ 3 ,1 Ш (2. (3, ,4, «5,
 1. What stays the same? What changes?

 4*. q«au Cie¿<~ ¡K^Y^ks^ r ^.-ome an¿L fU- ^ stays the same? What changes?
 W*¿ q«au eedes ai**¿ Й-скм**. r -Je mMltgraM 6^^4s^^^W'tr^ * *ьцу'<еси

 2. Find a direct formula that allows you to obtain the total number of circles С at any stage n

 in the sequence. Explain why you think your formula makes sense. 2. Find a direct formula that allows you to obtain the total number of circles С at any stage n
 C* 7n'M ^

 (a) (b)
 Chloe's generalization of the pattern Delilah's generalization of the pattern

 Consider the pattern sequence below. "3» s^~ _ . . „ ^
 -a ^S ^' / j, о Consider _ . . the „ pattern ^ sequence below. • , ¡ _ ,

 (1) (2) (3) (4) (5) ^ ^^R/ ^ í^ %o
 1. What stays the same? What changes? , ,. i / ') / . л (1) (2) (3) (4) (5)

 , 1. The What stays mtòálc the same? What Circle changes? -*¿ ^h^^^^Jrlöu^ , ^íím^ ,. Aäu . i / ') / . л p L ôtv. aiXuA- etc -*¿ oť ^íím^ Aäu . x Ша{ stays Ше same? mat changes?

 •^ -*- -j_ 2. Find a direct formula that allows you to obtain the total number of circles С at any stage n '~ ^ * i * -, аЛ- _ «^>Ч^ i ^ J -Kaitc^ n +-0 lL «Д^ «д^ C»*r'0"^ ^ > -*- -j_ in the sequence. Explain why you you think your formula makes sense. any stage . n M '~ * 0<«w i * -, аЛ- _ «^>Ч^ i ^ -Kaitc^ n +-0 «Д^ «д^ ^

 ^^ sequence. grgpTl, you your P^^hur^rc^uj^6, sense. .
 "¿ïïp 3 x / + / * */" J¿ = 3P -f / í 2. Find a direct formula that allows you to obtain the total number of circles С at any stage n

 2ч1л - л, -* / » "7 '

 (0 (d)

 Dina's numerical generalization of the pattern Earl's visual-numerical generalization of the pattern

 tently use the same multiplicative

 grouping strategy in finding the
 total number of, say, the circles at

 every stage in the circles pattern. For
 example, Chloe applied multiplica-
 tive thinking in obtaining the total
 number of circles at every stage in

 the three-legged circle pattern. Her
 pattern generalization in figure 7a
 exemplifies the continuous relation-
 ship between formula construction
 and justification.

 GENERALIZING BY

 SPECIALIZING

 We find specializing to be an effec-

 tive generalizing strategy. In our study,

 many students often paid attention to

 the known individual stages in a pat-
 tern one at a time that enabled them

 to abduce a possible overall structure

 for the pattern (Mason, Burton, and
 Stacey 1985). Specializing leads to a
 local generalization, a way of "seeing

 the general through the particular."

 Analogical reasoning in pattern
 generalization involves applying the
 specialized observation obtained in a
 single stage to the remaining known

 stages, which then becomes the basis

 in stating an abduced structure across
 stages, both known and unknown.

 For example, the generalizations of
 Shawna and Dung in figure 2 are
 results of seeing an analogous-additive
 relationship among the stages in the

 circles pattern. Franks generalization
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 of "doubling a row and minusing a

 chip" reflects an analogous-multipli-

 cative relationship. The scaffolding

 questions below help students develop
 an analogical strategy leading to an
 algebraic generalization:

 1. Focus on the first cue (or any single
 cue). Describe it for me. Do you see

 any relationship among the parts of

 the cue? Do you see any symmetry?

 Do you see a part of the cue being
 repeated elsewhere on the cue?

 2. Use what you observed in (1) to
 analyze the second (or another)
 cue. Do you notice the same struc-
 ture? How so?

 3. If what you found in (1) and (2)
 appear to be consistent, does it

 apply to the third (or still another)

 cue? The fourth (or yet another)
 cue? If you extend your observation
 to those cues you do not see, how

 might the nth cue look?

 Delilah made an analogy-based
 generalization shown in figure 7b.
 She noticed a middle gray circle with

 "three arms that keep on growing,"
 which explains why her algebraic gen-
 eralization took the form С = Ъп + 1.

 THE INEVITABLE DUAL CODING
 REALITY OF GENERALIZING

 When patterns appear as sequences of
 figurai stages, such as those in figures
 1 and 7, some students will establish

 their generalizations visually, whereas

 others will do so numerically. Visual

 generalizers, such as Chloe in figure

 7a and Delilah in figure 7b, perceive
 meanings from pictures and diagrams
 of particular stages. Dina, a numeri-
 cal generalizer, whose work is shown

 in figure 7c, derives satisfaction and

 comfort in manipulating numbers
 with trial and error and other numeri-

 cal patterning techniques (Becker and
 Rivera 2005). In our study, we also
 saw that visual generalizers tend to

 be adept at using a numerical strategy

 (Rivera and Becker 2008), such as
 Earl, whose work is shown in

 figure 7d. Earl initially saw stage 1
 as the part that stayed the same from
 the first stage to the next. When it
 became difficult for him to establish

 an algebraic generalization visually, he
 then employed the common differ-
 ence strategy leading to the formula
 Ъп + 1 = С, which he verified numeri-

 cally on two cases and verified visually
 using stage 2.

 Although visual approaches are
 powerful, we underscore the sig-
 nificance of numerical approaches
 in generalizing activities that do not
 involve visual stages (i.e., nonfigural
 patterns). For example, in eighth
 grade, students were successful in

 dealing with function problems such
 as that below:

 The Cost Function Task

 The cost to rent a construction

 crane is $750 per day, plus $250
 per hour of use.

 a. Set up a table of values showing 5
 consecutive hours of use. By de-

 fault, hour 0 equals $750 (why?).

 b. Set up a function rule that
 expresses the total rental cost T
 in terms of the number of hours

 h used per day. Explain your
 formula.

 с How much does it cost to rent

 the crane for 8 hours? 12 hours?

 Explain.

 d. How many hours does a con-
 struction company have to use a
 crane for a maximum budget of

 $2500 per day?

 e. What is the domain and range
 of the given problem? Explain.

 When we gave the same and similar
 problems to students (e.g., textbook

 tasks involving tables of numerical
 values), they interpreted the construc-

 tion and justification of function rules

 in terms of their earlier experiences in

 patterning activity.

 CONCLUSION

 A patterning activity gives students an
 opportunity to construct and justify
 an algebraic generalization. Pattern

 generalization involves a synergy of

 abduction, induction, and proof, and
 students must -

 1. state their assumptions and hy-
 potheses about a plausible struc-
 ture of a pattern as they construct
 a reasonable direct formula (the

 abductive phase);
 2. verify and test their choice of

 abduction repeatedly over several

 stages (the inductive phase); and
 3. justify (e.g., visually).

 Teachers need to emphasize the pos-
 sibility of having different approaches
 in visualizing a figurai pattern, which
 leads to multiple and/or equivalent

 algebraic generalizations. Hence,
 students need to be strongly encour-

 aged to share their approaches and

 interpret them, which should deepen
 their repertoire of analogical and

 multiplicative strategies for pattern
 generalization. Teachers also need to
 support group activities, communica-
 tion, and explanation of student work

 to facilitate students' learning new
 strategies from one another.
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