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Abstract

The article deals with issues concerning the abductive–inductive reasoning of 42 preservice elementary majors on patterns
that consist of figural and numerical cues. We discuss: ways in which the participants develop generalizations about classes of
abstract objects; abductive processes they exhibit which support their induction leading to a generalization; ways they justify their
generalizations in the abductive stage, and; the effects of figural and numerical cues in the manner they construct a plausible
abductive generalization. Two types of abductions are explored, model-based and manipulative. A proposed abductive–inductive
reasoning process for pattern sequences is presented and discussed in the concluding section.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In mathematics courses for university elementary majors, students learn to reason inductively, deductively, and
spatially. Students who learn to reason according to the principles governing each type are expected to develop
characteristics associated with adult cognition, marked by an ability to see through superficial features in favor of
deep structures, attributes, properties, and relations (Gelman & Wellman, 1991). With tasks that involve deduction,
for instance, students are expected to correctly assess the validity of arguments (Fig. 1) using known principles such
as modus ponens and modus tollens. However, such tasks can be complicated for some students because a variety of
everyday arguments possess some pragmatic truth based on the specificity of context (Holland, Holyoak, Nisbett, &
Thagard, 1986). However, being able to reason mathematically by deduction means overcoming the limitations of such
context through the use of formal rules of logic. Logic, Kyrburg (2001) astutely points out, is not only about reason,
reasoning, and arguments as it is also “concerned with right reason . . . good arguments . . . [and, thus,] contains an
ineliminable prescriptive element” (p. 589). A similar claim can be made in the case of spatial reasoning. Students
who depend primarily on the external features of a mathematical object alone to develop conjectures may produce
statements that contain misconceptions or naı̈ve conceptions about the object. For example, those who are unfamiliar
with several possible shapes of a triangle might conclude that an altitude or the orthocenter of any triangle would
always lie in the interior of the triangle. Thus, students acquire “spatially sensitive axioms and rules of inference” that
sanction good arguments and reasons from faulty ones (Chandrasekaran, 1997).
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Fig. 1. Examples of valid and invalid deductive arguments.

This article deals with issues concerning the abductive–inductive reasoning of preservice elementary majors on
patterns that consist of figural and/or numerical cues. At the outset, we were interested in assessing how undergraduate
students who expressed an interest in teaching K-8 children would solve generalizing tasks such as those that are shown
in Figs. 3 and 5. The tasks given to the participants contain sequences of figural and numerical cues which taken together
comprise classes of abstract objects.1 The accompanying questions oftentimes involve a twin calculation–encapsulation
process, that is, from determining specific output values to abductively forming a viable general expression which can
generate any element in the class. Harel and Tall (1989) define generalization as referring to “the process of applying
a given argument in a broader context” (p. 38). In particular, Dreyfus (1991) identifies the task of generalizing as
“deriv[ing] or induc[ing] from particulars, identify[ing] commonalities, [and] expand[ing] domains of validity” to
include “large classes of cases” (p. 35). Thus, the central purpose of generalizing tasks at the elementary level is to
help learners develop an ability to generalize from particular instances and be able to express the generalization in
ways that are both meaningful to them and valid from the standpoint of institutional practice. The requirement of an
elementary proof that a generalization indeed holds true for all the elements in the largest domain possible can take
several possible routes such as justifying it visually if it is accompanied by a given pattern sequence of figural cues.
Thus, in this paper, we resolve the following issues:

• How do preservice elementary majors develop generalizations about classes of abstract objects? In particular, what
abductive processes do they exhibit that support their induction leading to a generalization?

• How do they justify their generalizations in the abductive stage?
• How do figural and numerical cues influence the manner in which an abductive inference is constructed?

This article has been drawn from a much larger project on algebraic generalization at the K-13 and preservice-teacher
levels. The fundamental problem concerns ways in which learners in the area of school algebra acquire their abilities
(and not “ability”) to generalize. Thus, relevant questions include the following: What abductive processes enable
individuals to correctly develop viable generalizations based on a limited and incomplete set of concrete instances?
How is it that some are capable of justifying their abductive generalizations, while others are not? Sections 2 and 3
comprise the theoretical framework used in this study, with Section 2 addressing the nature of classes of objects in a
generalizing task and Section 3 providing a detailed, albeit not exhaustive, discussion of the concept of abduction. In
Sections 4 and 5, we address the bulleted issues above viz-a-viz the three generalizing tasks involving figural patterns
which 42 preservice elementary majors solved using several different abductive strategies. Section 6 provides a general
discussion and a provisional closure.

2. Classes of objects in a generalizing task

Following Shipley’s (1993) characterization of categories in empirical induction, a class of abstract objects in a
generalizing task consists of the following properties: there is a closed formula that can be derived from the cues; the

1 Sets of abstract objects such as even and odd numbers and those used in this study possess both perceptual and conceptual properties. At the outset,
we assume that generalizing knowledge about sets of abstract objects does not require making a distinction between processes of generalization
that focus on the acquisition of either perceptual (sensory) or conceptual (nonsensory) information. Constructing generalizations is grounded on
a dynamic relation between percept and concept. Also, Mervis, Johnson, and Scott (1993) clearly point out that even “expert knowledge remains
rooted in perception throughout the continuum of knowledge acquisition” (p. 154).
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cues, even if incomplete, provide a plausible range of terms that enable the performance of generalization, and; the cues
resemble each other in some way. For instance, the sequence {2, 4, 6, 8, . . .} is a class and the closed formula 2n is one
way of describing the overall structure of each number in the sequence. Also, it is perceptually apparent that evenness
is one characteristic that is common to the numbers in the sequence. The Fibonacci sequence {1, 1, 2, 3, 5, 8, 13, . . .} is
another example of a class that can be generally described by the recursive relation an+1 = an−1 + an (where a1 = a2 = 1).
Its closed formula is (1/

√
5)[((1 + √

5)/2)
n − ((1 − √

5)/2)
n
] with the additional assumption that the numerical cues

would obey the stated recursive form. The arithmetic class {3, 8, 13, 18, . . .} can be generalized by the direct expression
5n − 2 under the condition that the class is an increasing sequence and where n ≥ 1. Resemblance encompasses implicit
(deep) and explicit (surface) properties that cues within a class have in common, and these properties are not inherently
a priori. That is, depending on the knowledge and experiences of learners, they abduce properties by projecting them
onto individual elements in a class being tested. Projecting involves, at the very least, employing abductive processes
such as numerical heuristics (e.g., the finite difference method) in order to surface properties that are or are not directly
knowable due to the incompleteness of the cues presented to learners. Abduction, in an oversimplified sense, pertains
to viable inferences in the form of generalizations that can be claimed about classes of objects despite the fact that the
information presented to the knower is incomplete.

3. What is abduction?

The notion of abduction is commonplace in disciplinary areas such as linguistics, artificial intelligence, philosophy,
and semiotics. Recent investigations in school geometry (Arzarello, Micheletti, Olivero, & Robutti, 1998; Pedemonte,
2001), problem solving (Cifarelli, 1997, 1998, 1999a, 1999b), algebra (Reid, 2003; Rivera & Becker, 2007), and
calculus (Ferrando, 2000) have explored the significance of abduction in reasoning, in the formation of conjectures,
and in the development of plausible generalizations and proofs. The semiotician Peirce (1958) has pointed out its
significant role in the formation of induction. Further, it is not an entirely new concept since it is often employed in
daily life and in professional and academic practices such as when doctors perform a medical diagnosis (Charniak &
McDermott, 1985), when jurists analyze evidence in court cases (Pennington & Hastie, 1988), or when evolutionary
psychologists develop hypotheses on the role of psychological adaptation in human behavior (Holcomb, 1996). In
fact, we all make explanatory inferences — that is, abductions — about an object or a phenomenon of interest. Taken
together, the trivium of abduction, induction, and deduction provides a more coherent, “complete account of the whole
process of inquiry” (Minnameier, 2004, p. 76).

Traditional conceptualizations relevant to the nature of mathematical reasoning uphold the view that deduction and
induction form a binary pair in such a way that all non-deductive types of reasoning tend to fall under the category of
the other — that is, inductive (Magnani, 2005, p. 267; cf. NCTM, 2000). But Peirce thought otherwise and proposed
abduction as a third form of reasoning. A proper understanding of abduction requires carefully delineating between the
early and the late works of Peirce (Flach, 1996). Peirce introduced the idea of abduction as early as the 19th century
in relation to the epistemological processes of induction and deduction. In this article, we appropriate a later Peircean
perspective. Very briefly, the early Peirce framed abduction within the classical, Aristotelian logic of premise-conclusion
which he later abandoned in favor a less narrow and more dynamic view that foregrounds inference, including the
creative component inherent in abduction (Minnameier, 2004). Further, Peirce conceptualizes induction and deduction
as necessary complementary tools to abduction in the sense that they operate at the confirmatory and predictive stage
of knowledge construction. Abduction is, thus, seen to be primary in the constructive process. Fig. 2 illustrates the
relationship among the three types of reasoning.

Otherwise referred to as discovery reasoning, suggestive reasoning, and explanatory reasoning (Abe, 2003, p. 232),
abduction functions primarily in generating and forming hypotheses or theories but not in the naı̈ve sense of “happy
guessing” (Hempel, 1966). Formulating hypotheses and theories does not merely involve relying on direct observable
facts; it also results from a rigorous “trial and error elimination” method (Hempel, 1966). Josephson and Josephson
(1994) have proposed the following form of abduction which basically extends Peirce’s notion of abduction as the
generation of hypotheses to include selecting hypotheses that yield the best explanation:

D is a collection of data (facts, observations, givens).
H explains D (would, if true, explain D).
No other hypothesis can explain D as well as H does.

Therefore, H is probably true.
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Fig. 2. The trivium of abduction, deduction, and induction.

Abduction and deduction are distinguished in one important aspect. The “truth-preserving” (Josephson & Josephson,
1994, p. 13) nature of deduction always produces a valid and necessary inference or evidence because true premises
always yield true conclusions. The inferred conclusions are not generalizations because they have been necessitated
by the premises following established rules of deductive inference. Hence, there is no need for empirical verification
(Smith, 2002). Abduction, on the other hand, generates fallible or ampliative inferences (Josephson & Josephson,
1994, p. 12). It is “truth-producing” (Josephson & Josephson, 1994, p. 13) that results in the development of ampliative
conclusions which contain extra knowledge that has not been or could not be drawn directly from the premises. Thus,
some abductive conclusions might be strong, while others tend to be weak. Analogical and causal inferences are two
examples of ampliative abductions. Also, Abe (2003) points out that in deduction, “there is no chance for discovery”
since it “cannot work with an incomplete knowledge base” (p. 233), while abduction (and induction, for that matter)
employs “synthetic reasonings” in the form of discovery “that can deal with incomplete knowledge” (Abe, 2003).

Distinguishing between abduction and induction is a more complicated task. A good starting point in clarifying
differences between induction and abduction involves swans and their colors as a way to articulate the problem when
an individual claims to make a generalization mainly by relying on appearances. Children in many parts of the world
have always believed that the proposition, “Swans are white” is true at all times with the unproblematic belief that all
swans in the future will always be white. However, the problem with the proposition has to deal with the fact that it
might not be true among a different cohort of individuals. For example, children who live in Australia know swans
can be both black and white. What is being pointed out in this situation has in fact more to deal with abduction than
induction. That is, the primary issue is how to choose a hypothesis in relation to an observed phenomenon of interest
which can then be used to confirm something about the phenomenon. Thus, the problem of choosing and confirming a
hypothesis illustrates what Peirce considers to be abduction and induction, respectively. Such a process of transforming
possibilities into generalities will always be incomplete, but it always begins with abduction — “the operation which
introduces any new idea” (CP 2.264).

For Peirce, induction “does nothing but determine a value and deduction merely evolves the necessary consequences
of a pure hypothesis” (CP 5.171). Further, he associates deduction with proving that “something must be” (i.e., a logical
implication), induction with showing that “something actually is operative,” and abduction as “merely suggest[ing]
that something may be” (CP 5.171). Thus, abduction can be seen as being prior to induction and deduction which are
viewed as performing a follow-up confirmatory and predictive function, respectively. Abduction fuels the production
of (possibly fallible) conjectures leading to the adoption of a testable hypothesis (Abe, 2003, p. 234). Then, induction
tests the hypothesis through an experiment which if shown to hold increases its confidence value (Abe, 2003, p. 234).
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Abe (2003) writes: “Induction can be formalized as the generalization of examples. [It] finds tendencies in examples
and generates general rules (hypotheses) from examples and background knowledge” (p. 234).

The construction of novel concepts, hypotheses, and theories in abduction cannot simply be reduced to the per-
formance of induction because the latter produces knowledge that is “more of the same” (Minnameier, 2004, p. 79).
Abduction, however, employs a “creative inferential” process that enables the discovery of new concepts, hypotheses,
or theories (Abe, 2003; Magnani, 2005) which “cannot be directly observed” (Abe, 2003, p. 234) and oftentimes “starts
from consequences and looks for reasons” (Magnani, 2005, p. 265). While induction has a discovery component, how-
ever, what is discovered are oftentimes “tendencies that are not new events” (Abe, 2003, p. 234). Consequently, abduced
concepts, hypotheses, or theories basically have the nature of being explanatory inferences that either have a high degree
of plausibility (Peirce, 1958) or evolve into an “inference to the best explanation” (following Josephson & Josephson,
1994). Furthermore, like induction, abductive reasoning is oftentimes constrained by the realities of uncertainty and
imperfect or incomplete information which influence the strength of plausibility (Josephson & Josephson, 1994, p. 270).

4. Explicating the roles of abduction and induction in generalization

The Dotted Squares Task (Fig. 3) was given to the subjects as a pattern sequence of increasing squares. We were
interested in ascertaining how they would abduce a viable formula from the available classes of numerical and figural
cues which would then enable them to induce and eventually generalize to any number of arrays. In particular, we
address the following questions: How do those subjects who primarily rely on the available figural cues develop their
abductive generalizations? In the case of those who rely primarily on the numerical cues, how do they reason about their
generalization despite the fact that the figural cues clearly show a perceptually available attribute of each element in the
class (i.e., squares)? In the inductive phase, how do the subjects confirm their abductions before stating a generalization?

4.1. Method

4.1.1. Subjects
Forty-two undergraduates (34 women, 8 men) participated in the clinical interview for extra credit. They were

enrolled in an introductory course for elementary mathematics teachers in a public university in northern California.
Their ages ranged from 19 to 55, with a mean age of 23.42. Racial profile is as follows: 15 Caucasian Americans, 4
African Americans, 11 Asians and Asian Americans, and 12 Hispanic Americans. The task was given to individual
participants, and the mean time it took to accomplish the task was 3 min.

4.1.2. Materials
Each triad in the generalizing task was constructed so that the second and third figures and numerical values were

related to the first and second figures and numerical values, respectively. The task required all participants to either
draw or compute values for two additional cases before they were asked to obtain a generalization.

Fig. 3. Dotted Squares Task.
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Table 1
Summary of responses for the squares task (n = 42)

Figural Numerical

• n2 • 2 • 33
• n • 1
• x + 2 (or n + 2) • 2
• 1 + 3n + 2m • 1
• N × 32 = 64 • 1

Did not generalize to a closed form • 2

4.1.3. Procedure
Subjects were asked to read the task first and then to think aloud while in the process of solving the task. The interview

protocol was designed to help them explicitly articulate how they were performing generalization. In particular, the
protocol addressed issues such as: (1) whether the numbers they computed and the generalizations they developed
were drawn from either the numerical cues or the figural cues; (2) how they justified and confirmed the viability of
their generalizations, and; (3) whether there were other ways of establishing and confirming their generalizations.

4.1.4. Results
Table 1 presents a summary of the students’ abductive generalizations with at least 83% of the subjects inferring

the closed form n2. Only two participants, MC and JS, primarily relied on the figural cues, while 33 others employed
a numerical strategy. MC immediately saw that rows and columns on each figural cue actually contained the same
number of dots:
1 MC: It’s n squared.
2 FDR2: So why n squared?
3 MC: Because I see that from the number of arrays. For 1 there’s one dot, 2
4 there’s two columns and two rows and for 3, three columns and three
5 rows. By doing that altogether there’s n squared.

JS saw each figural cue to be consisting of multiples of the same row:

6 JS: So you need n amount of . . . squares. You’re using multiples, so it’d be n
7 squared.
8 FDR: How do you justify that?
9 JS: For example, remember 2. 2 by 2 so you’re on number 2. So you’d put 2
10 down and there’s a row 2 by a row 2. So 2 times 2 is 4. For 3, it’d be 3
11 times 3. So that’s why it’s n squared.

In the case of those who primarily relied on the numerical cues, 27 out of the 33 (about 64% overall) quickly
recognized the fact that the six-member class {1, 4, 9, 16, 25, 36} consisted of “squared numbers” which led them to
the closed form n2 as a possible generalization. The remaining six initially set up a table of values and obtained the
consecutive differences in order to generate 25 and 36. They then drew squares consisting of 5 and 6 arrays, counted the
dots, and obtained the same numbers. However, in the final stage of generalization, the existing knowledge about the
differences was abandoned since they saw a connection between the independent and dependent values (i.e., 1 → 12,
2 → 22 = 4, 3 → 32, etc.). Finally, in confirming the viability of their abductive generalization, all 35 subjects pointed
to the given figural cues and assumed that the pattern sequence was increasing.

Several other types of abductions were generated due to the fact that seven subjects perceived relationships among
the elements in the same class rather differently. Two of the seven justified the abduction n + 2 by claiming that it
resulted from the second consecutive finite difference, as shown in Fig. 4. For example, SM obtained the correct
number of dots for arrays 5 and 6 by drawing the dotted squares and then counting the dots in each array one
by one. She then shifted to a numerical strategy when she computed the first consecutive difference between two
successive numerical cues and obtained the numbers 3, 5, 7, 9, and 11. Even if she recognized that with five dots, a

2 FDR refers to the first author who conducted the interview with all 42 participants.
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Fig. 4. Explanation for n + 2.

square had to have length 5, she wanted to establish a generalization on the basis of the second consecutive common
difference:

12 SM: How many dots do you need to form a square with n arrays? This one’s
13 more complicated because . . . This must be n plus . . . Hmm, this

increases
14 by 2. n + 2, I guess.
15 FDR: So how do you justify the n plus 2? What does that mean?
16 SM: n plus 2 . . . n represents the length and the width. I don’t know. Ahm. I’ve
17 a problem with it.

Two students, CS and RT, produced two different abductions as follows. In thinking about the abductive general-
ization n, CS thought that because a square with n arrays could be formed with n dots in each array, then the general
expression n was sufficient:

18 You need n dots because with n dots you can form an array which you use
to

19 form a square . . . like . . . with 2 dots I can form two arrays with 2 dots
each, 3

20 dots here form 3 arrays with 3 dots in each. That’s how I formed these two
21 squares [referring to squares with 5 and 6 arrays] . . . It should be n, I

think.

RT thought about her abductive generalization, n × 32 = 64, in the following manner:

22 RT: It’s been a long time since I’ve done geometry. So I don’t remember
23 formulas very well.
24 FDR: That’s okay. Just think about it.
25 RT: [Reads the problem.] Draw the next two squares. Okay, I get that. Okay,
26 so I will need 2, 3, 4, 5 dots. Two squares. So that would be double its
27 size. Then I would need what’s 16 plus 16? Ahm, hold on. Times 2 is 32.
28 So you’ll need 32 dots.
29 FDR: What about the next one?
30 RT: How many dots do you need to form a square with n arrays? Ah . . . not
31 sure. So what would I do. I don’t know if I would go . . . oh let’s see, 32. I
32 don’t wanna do plus ‘coz I’ve done too many pluses so I’ve to think for a
33 minute . . . 32 times 2 is ah 64. So n × 32 is . . . like this doubling in size,
34 so it’s 64.

For RT, the numbers 1, 4, 9, and 16 resulted in a process of doubling instead of squaring. Hence, the next two extensions
she obtained according to her formula of doubling were 32 and 64. Further, since task B required her to develop a
generalization for a square with n arrays, she produced a “recursive type” formula by multiplying 32 by n which she
then equated to 64 (similar to the form Current × n = Next).
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Two students, YH and MG, were unable to state a closed formula but nonetheless abduced in the following manner.
Initially, YH quickly obtained the total number of dots that was required to form squares with five and six arrays
since she recognized them to be perfect squares. However, in developing a generalization, she wanted to develop a
formula that would take into account the two successive differences she obtained from the extensions (see Fig. 4).
Unfortunately, she was unable to find one. In the case of MG, she was unable to state a generalization because she
obtained incorrect values for the two additional cases which made it difficult for her to recognize common features.
She initially obtained the first consecutive differences from the given terms {1, 4, 9, 16}. However, in forming squares
with five and six arrays, she merely extended the given square with four arrays by adding one and two columns of dots
on the right side of the square, respectively, in which case she then counted 20 and 24 dots. She then could not make
sense of the class {1, 4, 9, 16, 20, 24}.

4.1.5. Discussion
The two students who abduced the generalization n2 from the figural cues were significantly influenced by their

perception about the way in which the square arrays were formed. In fact, they quickly saw that the correspond-
ing numerical cues resembled perfect squares. What was relevant in their abduction process was their cognitive
capacity to draw on their stored perceptual knowledge — that is, their structured information about the dimen-
sional property of squares — perhaps as a consequence of previous mathematical experiences that enabled them
to form a viable explicit, variable-based representation. While they immediately saw a square among the figu-
ral cues, they used a property of a square in abducing and in explicitly surfacing the form n2. Magnani (2005)
refers to this type of abduction as model-based whereby the students used algebraic symbols to articulate an
important property about the sequence of figural cues, or in “transforming knowledge from its tacit to its explicit
form” (Magnani, 2004, p. 517). Another manifestation of model-based abduction involves numerically recogniz-
ing the basic structure of squared numbers. Without relying on the figural cues, some participants decomposed
1 into 12, 4 into 22, 9 into 32, and so on which also enabled them to abduce the form n2. As a matter of
fact, they referred to the figural cues only when they were prompted to confirm their generalization in another
way.

In performing the inductive task of confirming an abduced generalization, the subjects basically used the available
and constructed figural cues to show that the general form n2 referred to the fact that any square array had either an equal
number of rows and columns or multiples of the same row. Both abductive and inductive reasoning complemented each
other in the sense that while it was easy for the subjects to generate and justify a possible abductive generalization, it
was only in the inductive phase whereby they tested the plausibility of the abduced form by examining extensions (i.e.,
particular cases beyond what has been made available for them). While those who came up with the general forms
n and n + 2 thought their justifications in the abductive phase were reasonable, they eventually abandoned the forms
in the inductive phase due to the relative insufficiency of either form in fully capturing in symbolic terms a general
attribute that would yield the total number of dots for any given far generalization task (such as how many dots all in
all in a square with 127 arrays).

5. Figural and numerical approaches to establishing generalizations in the abductive phase

We gave the Squares Task and the Hexagons Task (Fig. 5) to the participants in order to fully assess their different
abilities in abducing rules of relationship or invariant properties within classes of cues that have been represented
in both figural and numerical form. Considering the lack of further specific assumptions and explicit contexts in
which to think about the pattern tasks, participants were allowed to produce various rules or properties which they
could express using several different algebraic forms involving one or two variables and with the forms possibly
taking the shape of a recursion, a direct expression, or some other viable means. We note that in the elementary and
middle school mathematics curricula, the two tasks are typical generalizing problems that teachers oftentimes use
to illustrate classes that are arithmetical sequences in the linear order. Hence, there is a tacit assumption that each
class is an increasing sequence with the polygons continuing to grow along one dimension only. The participants
were asked to generate two additional cases from the known cases on each task. Then they were asked to abduce a
generalization in whatever form that made sense to them. The same procedure protocol (Section 4.1.3) was used on both
tasks.
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Fig. 5. Squares task and hexagons task in compressed form.

5.1. Results

Tables 2 and 3 present the frequency of responses and the response patterns of participants who used either figural
or numerical cues in abducing a generalization. On both tasks, they saw the numerical cues as providing better support
than the available figural cues in developing an abduction (with a mean of 65%). The most frequent abductive process
that used the numerical cues involves the method of finite difference (see Fig. 8 for an illustration). On average, 39%
claimed that the relation among the dependent values on the first and the second task could be expressed by the
formulas n + 3 and n + 5, respectively. When prompted to justify the viability of the generalizations, they pointed to
the common differences which they obtained from the numerical cues and did not link the differences back to the
figural cues. Also, due to lack of notational fluency, the variable n in n + 3 and n + 5 was defined to mean “the number
of matchsticks (or toothpicks) before it.”

In the case of LM who abduced the form 4 + 3n from the available numerical cues, she primarily relied on the
sequence of dependent terms {4, 7, 10, 13, 16} without taking into account how the values were related to the squares
being formed. Thus, she assumed that the variable n would implicitly take on values beginning with 0. She claimed a
similar argument in the case of the abduced form 6 + 5n. But when she was asked to explain what the formulas meant
in the context of the task and, in particular, the specific case when n = 0, LM was unable to justify them.

Table 2
Summary of responses for the squares task 1 (n = 42)

Figural Numerical

• 3n + 1 • 5 • 5
• 4 + (n − 1)3 • 1
• 4 + 3n • 4 • 1
• n (or x) + 3 • 5 • 16
• 4n • 1
• n + (n − 1) = #n − 1 • 1
• n × 4 − 1 • 1
• n + 3 = 16 • 1

Unable to generalize • 1
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Table 3
Summary of responses for the hexagons task 2 (n = 42)

Figural Numerical

• 5n + 1 • 4 • 6
• 6n − n + 1 • 1
• 6 + (n − 1)5 • 1
• 6 + 5n • 4 • 1
• n (or x) + 5 • 5 • 17
• n + (n – 1) = #n − 1 • 1
• 26 + n = 31 • 1

Unable to generalize • 1

Five participants used guess and check in abducing the general forms 3n + 1, 5n + 1, and 6n − n + 1. In the case of the
form 3n + 1, they initially constructed a two-column table showing number of squares in the first column and number
of matchsticks in the second column. Then they obtained the common difference between two consecutive rows in the
second column, wrote down 3n, and claimed that each dependent term was “always 1 more than 3 times n.” A similar
process was claimed in the case of the form 5n + 1.

GL employed a painstaking numerical process of trial and error in abducing the form 3n + 1 (refer to Fig. 9 for his
written solution). He began with the form 4n − 1 and computed the value for n = 1. Because the value he obtained was
3, he then tried 4n − n and evaluated this expression for n = 1. Seeing that he needed 1 more to obtain the first term,
4, he added 1 to 4n − n. Once again he evaluated 4n − n + 1 and saw that it produced the correct dependent values in
cases n = 2 and 3. When he was asked to explain the viability of the abduced form 4n − n + 1, he reasoned as follows:

35 FDR: I understand where the 4n comes from. But this — n + 1 is not clear to me.
36 Tell me more.
37 GL: Okay. Well I see here that four matchsticks equals one square. So it will
38 just keep doubling down to 8 but it doesn’t show us here. It’s not. 1, 2,
39 3, 4, 5, 6, 7 coz you’re using that 1. So that’s 2 [referring to the two
40 squares]. So what I’ve tried to do is just go through like a shortcut and
41 cheat coz I want 4, 8 but I know I just had to take 1 away to get 7. So
42 now I jumped ahead to 12. Okay but I know it’s not because I have to
43 subtract maybe one or two. So 1, 2, 3, 4, 7, 8, 9, 10. So here I subtracted
44 1 [referring to the first case], here I subtracted 2 [referring to the second
45 case]. Now with three squares, I have to subtract 3 from what normally
46 would make up one square. So it will be 16 subtracted by 3, 13 and I’ll
47 try that out. Okay and here [referring to the third case] I have 10, 11, 12,
48 13. So what I didn’t know how to do was how to keep saying if I keep
49 adding on squares I have to subtract that many. So it’s like taking away 1
50 from 8, 2 from 12, 3 from 16 . . . so that’s why I have this [referring to 4n
51 − n+1]

From the above transcript, the form 4n − n + 1 actually involves two subgeneralizations, that is, 4n and n + 1. He knew
that each square required four matchsticks which would explain the term 4n. But he also knew that he had to subtract
1, 2, 3, . . ., (n + 1) matchsticks in each case beginning with the second case. However, GL was not aware that the forms
4n − (n + 1) and 4n − n + 1 were not equivalent. In fact, he then simplified the former expression and obtained 3n + 1.
Finally, he verified that the numbers 4, 10, 13, and 16 could actually be drawn from the form. When GL was asked if
he could abduce in another way, he claimed the following:

52 Okay it has to be a minimum of 4 matchsticks to be n squares. So . . . so it’s a
53 minimum of 4 . . . 4 matchsticks . . . but it could go on forever. But you need
54 something like what we were doing. . . . So hold on. [He writes 4 + 3n.] I just
55 wrote that to try it out. 4 matchsticks plus 3 times n. Okay now I’m starting to
56 think minus 1 since as I keep adding squares on I have to keep subtracting. . . . I
57 can see maybe 4 matchsticks but I’m multiplying. See I don’t know what the 3s
58 are there for.

GL used the same trial-and-error abductive strategy in figuring out the form 6n − n + 1 for the hexagons task.
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Fig. 6. KM’s numerical method in abducing the form 3n + 1 for the squares task.

KM employed a different numerical strategy in obtaining the forms 3n + 1 and 5n + 1. First, she used the given table
of numbers and column by column computed the difference between the independent and dependent values in the same
column (Fig. 6). Because a pattern emerged from the differences that she computed for the first three cases, she then
extended the table by simply following the pattern. This enabled her to determine the number of sticks for the next
two cases. However, in establishing the abduced forms, she primarily relied on the first difference, 3, and claimed that
adding 1 (pointing to the first term in the first row of values) to 3n would suffice in generating all the dependent terms
of the sequence.

In sum, the 22–25 participants who abduced primarily through the numerical cues used several numeri-
cal strategies such as finding a common difference, guess and check, and trial and error. However, even if
they felt confident that the general forms they generated were sufficiently viable because they were in fact
true in all the cases they tested in the follow-up inductive phase of generalization, they still could not jus-
tify their viability other than the fact that they worked for the numerical values used. Another issue which
they had difficulty addressing was whether the abduced forms they inferred were sufficient enough to describe
what they perceived to be the features of the classes they were generalizing (based on a no-response to ques-
tions such as “Is that the only possible formula?” or “Can the numbers be generated by using a different
expression?”).

In the case of the five to six subjects who abduced a generalization primarily on the figural cues, they immediately
saw a relationship among the drawn cues. In fact, the general forms they abduced reflected the manner in which
they interpreted the drawn figures, including the ones they were asked to construct. Also, the abduced generalizations
signified a constructive process which for them remained uniform and invariant. For example, in abducing the form
3n + 1, JS began by computing the common difference, 3, and then pointed out that 3 was the number that would
determine the “difference between one figure to the next” since forming a new square in a succeeding pattern meant
adding three new matchsticks:

59 You’re trying to make ahm a full square with four matchsticks and if you
60 already have one side then you would be adding three more on to it depending on
61 the number of squares that you wanna make ‘coz that’s how many you’re gonna
62 put, that’s how many threes you’re gonna add on.

Furthermore, those subjects who abduced from the figural cues employed symbols as a vehicle for expressly articulating
a generalized relationship. For instance, in the transcript below, CG explained how he abduced the form 4 + (n – 1)3
for the squares task:

63 How many matchsticks are needed to form four squares? So ahm I’m
64 looking for a pattern. For every square you add three more. So let’s see. So
65 that would be four plus three for two squares. Plus three more would be for three
66 squares. So it’s ten matchsticks. So you have four. So there would be thirteen. So
67 thirteen plus three more is sixteen . . . So for three squares, it would just be two
68 threes. So there’d be two threes, three threes is for four squares, and four threes
69 for five squares. For n squares, it would just be ahm n minus 1 threes.
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5.2. Discussion

Participants who abduced numerically developed formulas that could be characterized as more practical and sit-
uational than conceptual. Further, they justified the viability of the forms they produced through a mere appearance
match. For example, they verified in the induction phase that the abduced forms 4 + 3n and 6 + 5n correctly generated
the two classes beginning with the case when n = 0 without considering what the variable n meant in relation to the
task being analyzed (based on a no-response to the question “What does n = 0 mean with respect to the problem?”).
The general forms they constructed by way of a numerical strategy could be viewed in Magnani’s (2005) terms as
having the character of a manipulative abduction in the sense that the forms were primarily developed on the basis of
having been drawn from either executing an efficacious or automatized mathematical procedure or using a practical
approach in surfacing features and possible fit without the benefit of a conceptual explanation (cf. Magnani, 2004). For
Magnani (2005), a manipulative abduction develops in “situations where we are thinking through doing and not only,
in a pragmatic sense, about doing” (p. 274).

Further, while the reasoning and the representational forms that the participants produced involve communicable
knowledge, they, however, did not oftentimes reach the status of a conceptual explanation whose viability could
be rigorously evaluated. For example, those who abduced numerically could easily use the finite difference method
automatically as a consequence of repeated engagement with the method. Unfortunately, in most cases they did not
provide a conceptual basis in justifying the viability of the abduced forms they produced because they perceived the
numerical method as an operation that had the characteristic of being practical and situational. Hence, it is noteworthy
to raise the issue of instability of the abductive process with respect to subjects who employed numerical strategies
since many of their abductive processes were task-specific in intent — that is, they worked but only within the context
of the operations they used to accomplish the objectives in a task. For example, GL and KM’s abductive processes
would not work if they were used in a different situation.

Participants who abduced figurally saw relationships within classes of figural cues. Their abductive processes can
be summarily described as performing a kind of relational similarity within classes in which the focus was not on the
individual cues in a class per se but on a possible invariant relational structure that was perceived to exist between and,
thus, projected onto the cues. Further, since they immediately saw an invariant relational structure among the figural
cues, the corresponding numerical cues did not matter significantly in their abduction.

Variables also played an important role in expressly articulating an abduction. Participants who abduced figurally
introduced variables in relation to their need to capture in symbolic terms an invariant action on the figural cues. For
example, the abductive form of CG (Fig. 7) reflects the use of a variable which substitutes as a general placeholder or
expression for a sequence that he perceived to continuously grow indefinitely. Participants who abduced numerically
employed variables rather inconsistently. In fact, some were confused with what the variables meant at various stages
in their abduction, that is, they could not figure out whether the variable n pertained to the number of squares (or
hexagons) formed or to the number of matchsticks (or toothpicks) needed to form squares. The written solutions of
RM and GL (Figs. 8 and 9) illustrate how variables were loaded with no other algebraic intent except in relation to
constructing a general expression that would best produce the dependent terms upon substitution of a value in the
relevant domain.

6. General discussion and provisional closure

Abduction and induction play an important role in generalizing knowledge from a finite, incomplete class of
particular instances (whether figural, numerical, or everyday objects). A valid and viable generalization reduces the
amount of time and energy needed if individual instances out of a possibly infinite number of cases were to be
investigated one at a time. Researchers have underscored the need for all learners to develop meaningful abductive
processes leading to the construction of general knowledge since it is intimately connected to larger issues involving
mathematical abstraction (Cifarelli, 1999b; Davydov, 1990; Dreyfus, 1991; Harel & Tall, 1989; Tall, 1991).

In this article, we described how two different representational cues (figural, numerical) assisted the participants
in abducing general forms from incomplete classes of cues, including how they confirmed the viability of the forms
through induction that eventually led to an established generalization. Fig. 10 has been derived from Fig. 2 with
additional information drawn from the findings in the study. Given the classes of cues that the participants had to deal
with in all three generalizing tasks (Figs. 3 and 5), a preference for numerical or figural abductive strategies seems to
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Fig. 7. Written solution of CG on the hexagons task.

affect in significant ways the manner in which abduced forms are discovered, constructed, and generalized in symbolic
terms. Further, at the inductive phase, testing and confirming the viability of an abduced form, while definitely not
deductively valid processes, assist significantly in deciding whether the stated premises (i.e., the proposed general form
as a rule, the available cues as cases) make it reasonable to accept the conclusion (i.e., the generalization). We also note
that while the participants who abduced numerically developed more strategies than those who abduced figurally, the
latter group was more capable than the former in justifying the viability of, including selecting the best, abduced forms.

Fig. 8. Written solution of RM on the squares task and the hexagons task.



F.D. Rivera, J. Rossi Becker / Journal of Mathematical Behavior 26 (2007) 140–155 153

Fig. 9. Written solution of GL on the squares task.

Another interesting observation about the relationship between abduction and induction in generalization involves
what we refer to as the progressive formalization of forms, a view very similar to the ones suggested by Aliseda (1996)
and Abe (2003). In the abductive phase, the participants would oftentimes discover and construct a viable form R
for a class not on the basis of the available elements or the entire class itself but only on one or two cases (cues).
(See, for example, the abductive reasonings offered by MC and JS in Section 4.) Then, in the inductive phase, when
the participants have repeatedly tested and confirmed the viability of R in several more cues, R is further generalized
into the form F which would then be assumed to hold for the entire class (Aliseda, 1996). (See, for example, the
abductive–inductive reasoning of CG in Section 5.) In a similar vein, the inductive form F could also be viewed as
having resulted in “tendencies that are not new events” (Abe, 2003, p. 234).

Our final two points concern the issue of possibly having different types and forms of abductions for a given class
of abstract objects. First, concerning the issue of types of abduction, in Sections 4 and 5, we extrapolated model-based

Fig. 10. The abductive–inductive reasoning process on linear patterns.
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and manipulative abductions which are classified as extra-theoretical abductions.3 We assume there are still many
other forms (see, e.g., Thagard (1988)) that could (better) explain the process of generalization of pattern sequences
of oftentimes incomplete classes of abstract objects. Further, we explored abduction as a way of complicating the
conversation about how we conceptualize the process of generalization in mathematics which oftentimes tends to be
equated with induction alone (Dreyfus, 1991; Harel & Tall, 1989). Merely associating generalization with the act of
inducing from particulars or performing iterated actions seems to ignore the creative component that Peirce (1935)
has pointed out as being embedded in abduction. Abduction for us provides a more robust characterization of how
individuals begin to actually construct and establish generalizations. Generalization is, thus, seen as an outcome of a
combined abduction–induction process.

Second, concerning the types of abduction that are possible with patterning tasks in algebra, we surface the prob-
lematic and prevalent practice in which such tasks are oftentimes stated in textbooks with a seemingly taken-as-shared
assumption that the sequences were to evolve in a particular manner across contexts of any kind and, thus, are expected
to take the shape of a predictably correct general form. For example, all the participants in the study interpreted the two
patterns in Fig. 5 as linear sequences. But a more rigorous mathematical analysis of the two patterning tasks reveals
the ambiguous nature inherent in such tasks — that is, it is possible to produce equally viable and valid abductions
that could be inductively supported under different sets of assumptions. However, such tasks run the risk of becoming
algebraically insignificant, that is, incapable of being expressed or too complex to be written down in some defined
closed form (cf. Lee (1996)). Further, while abductive inferences about patterns may open up the possibility of having
several different and correct generalizations, they also have to be “good abductions” in the same manner that Kyrburg
(2001) in the introduction above asserted about the prescriptive element inherent in logic. Good abductively drawn and
inductively tested generalizations involving patterns in algebra should be able to explain why they hold considering
the givens and the unknowns and be tested on the basis of some rigorous experimental verification. Pace Peirce:

What is good abduction? What should an explanatory hypothesis be to be worthy to rank as a hypothesis? Of
course, it must explain the facts. But what other conditions ought it to fulfill to be good? The question of the
goodness of anything is whether that thing fulfills its end. What, then, is the end of an explanatory hypothesis? Its
end is, through subjection to the test of experiment, to lead to the avoidance of all surprise and to the establishment
of a habit of positive expectation that shall not be disappointed. Any hypothesis, therefore, may be admissible, in
the absence of any special reasons to the contrary, provided it be capable of experimental verification, and only
insofar as it is capable of such verification. (CP 5.197)
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