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Abstract This paper discusses the content and structure

of generalization involving figural patterns of middle

school students, focusing on the extent to which they are

capable of establishing and justifying complicated gener-

alizations that entail possible overlap of aspects of the

figures. Findings from an ongoing 3-year longitudinal

study of middle school students are used to extend the

knowledge base in this area. Using pre-and post-interviews

and videos of intervening teaching experiments, we specify

three forms of generalization involving such figural linear

patterns: constructive standard; constructive nonstandard;

and deconstructive; and we classify these forms of gener-

alization according to complexity based on student work.

We document students’ cognitive tendency to shift from a

figural to a numerical strategy in determining their figural-

based patterns, and we observe the not always salutary

consequences of such a shift in their representational

fluency and inductive justifications.

1 Introduction

Research on patterning and generalization over the past

decade or so has empirically demonstrated the remarkable,

albeit fundamental, view that individuals tend to see the

same pattern P differently. Consequently, this means they

are likely to produce different generalizations for P. For

example, when we asked 42 undergraduate K-8 pre-service

teachers to establish a general formula for the total number

of matchsticks at any stage in the Adjacent Squares Pattern

shown in Fig. 1, Chuck obtained his generalization

‘‘4 + (n – 1)3’’ in the following manner:

How many matchsticks are needed to form four

squares? So ahm I’m looking for a pattern. For every

square you add three more. So let’s see. So that would

be 4 plus 3 for two squares. Plus 3 more would be for

three squares. So it’s 10 matchsticks. So you have 4.

So there would be 13. So 13 plus 3 more is 16. … So,

for three squares, it would have to be two 3s. So

there’d be two 3s. Three 3s is for four squares, and

four 3s for five squares. For n squares, it would just be

ahm n minus one 3s. (Rivera & Becker, 2003, p. 69).

When we gave the same pattern in Fig. 1 to a group of

middle school students three times over a 2-year period,

first when they were in sixth grade and then twice in

seventh grade, all of their generalizations consistently took

the form T = (n · 3) + 1. For example, in a clinical

interview prior to the Year 2 teaching experiment, Dung,

in seventh grade, initially set up a two-column table of

values, listed the pairs (1, 4), (2, 7), and (3, 10) and noticed

that ‘‘the pattern is plus 3 [referring to the dependent

terms].’’ He then concluded by saying, ‘‘the formula, it’s

pattern number · 3 plus 1 equals matchsticks,’’ with the

coefficient referring to the common difference and the y-

intercept as an adjustment value that he saw as necessary in

order to match the dependent terms. When he was then

asked to justify his formula, he provided the following

faulty reasoning in which he projected his formula onto the

figures in a rather inconsistent manner:

For 1 [square], you times it by 3, it’s 1, 2, 3 [referring

to three sides of the square] plus 1 [referring to the
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San Jose, CA 95192-0103, USA

e-mail: rivera@math.sjsu.edu

123

ZDM Mathematics Education (2008) 40:65–82

DOI 10.1007/s11858-007-0062-z



left vertical side of the square]. For pattern 2, you

count the outside sticks and you plus 1 in the middle.

For pattern 3, there’s one set of 3 [referring to the last

three sticks of the third adjacent square], two sets of

3 [referring to the next two adjacent squares] plus 1

[referring to the left vertical side of the first square].

We also found it interesting that none of the middle school

students came up with a general form similar to Chuck’s.

Further, when they were asked to explain an imaginary

student’s formula, T = 4n – (n – 1), for the Square Tooth-

picks Pattern (Fig. 1) in Year 1 of the study, prior to a

teaching experiment on constructive and deconstructive

generalization, they found this and other similar tasks

difficult.

In this article, we take the tack of extrapolating issues

relevant to the following two questions: what is the nature

of the content and structure of generalization involving

figural patterns of middle school learners (i.e., Grades 6–8,

ages 11–14)? To what extent are they capable of

establishing and/or justifying more complicated general-

izations? In addressing the first question, we initially

survey relevant research in the area of middle school

algebraic thinking and then consider how findings in our

ongoing longitudinal research at the middle grades in

relation to generalization further confirm and/or extend the

current knowledge base in the area. The second question

zeroes in on what the middle school children in our 3-year

study could accomplish within the scope of their compe-

tence, including, and especially, factors that inhibit them

from constructing and/or justifying more complicated

algebraic generalizations. For example, how is it that

adults like Chuck could easily generate a general form, or

seem to exhibit pattern flexibility, which many, if not,

most middle school students like Dung could not easily, or

might never, accomplish? Are middle school students

simply developmentally underprepared to produce such

forms, or can they acquire Chuck’s process through more

learning (i.e., more experience)? Finally, our overall intent

in raising the two issues above is to initiate a complicated

conversation on possibly comparable, as well as different,

cognitive characteristics between middle school and ele-

mentary (or early) algebraic thinking in relation to

patterning and generalization involving figural cues. For

example, are there similarities and/or differences in the

way elementary and middle school children establish

invariant properties or relationships among the figural cues

in a pattern? Do both groups share similar levels of

expressing a generality involving figural cues? Are middle

school children more capable of perceptual agility in

patterning than elementary school children?

2 Recognizing regularities in patterns

Several researchers have pointed out that the initial stage in

generalization involves ‘‘focusing on’’ or ‘‘drawing atten-

tion to’’ a possible invariant property or relationship

(Lobato, Ellis, & Muñoz, 2003), ‘‘grasping’’ a common-

ality or regularity (Radford, 2006), and ‘‘noticing’’ or

‘‘becoming aware’’ of one’s own actions in relation to the

Square Toothpicks Pattern.  Consider the sequence of toothpick squares below. 

 1          2      3 

A. How many toothpicks will pattern 5 have? Draw and explain. 

B.  How many toothpicks will pattern 15 have? Explain. 

C.  Find a direct formula for the total number of toothpicks T in any pattern 

number n. Explain how you obtained your answer. 

D.  If you obtained your formula numerically, what might it mean if you think 

about it in terms of the above pattern? 

E.  If the pattern above is extended over several more cases, a certain pattern uses 

76 toothpicks all in all. Which pattern number is this? Explain how you obtained 

your answer. 

F.  Diana’s direct formula is as follows:  T = 4·n – (n – 1).  Is her formula correct? 

Why or why not? If her formula is correct, how might she be thinking about it? 

Who has the more correct formula, Diana’s formula or the formula you obtained 

in part C above? Explain. 

Fig. 1 The adjacent squares

pattern task in compressed form
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phenomenon undergoing generalization (Mason, Graham,

& Johnston-Wilder, 2005). Lee (1996) poignantly surfaces

the central role of ‘‘perceptual agility’’ in patterning and

generalization which involves ‘‘see[ing] several patterns

and [a] willing[ness] to abandon those that do not prove

useful [i.e., those that do not lead to a formula]’’ (p. 95).

Mason et al. (2005) points out as well how specializing on

a particular case in a pattern on the route to a generalization

necessitates acts of ‘‘paying close attention’’ to details,

especially those aspects that change and/or stay the same,

best summarized in Mason’s (1996) well-cited felicitous

phrase of ‘‘seeing the general through the particular.’’

Results of our earlier work with 9th graders (Becker &

Rivera, 2005) and undergraduate majors (Rivera & Becker,

2007, 2003) also confirm such a preparatory act whereby

perception—as a ‘‘way of coming to know’’ an object or

some property or fact about the object (Dretske, 1990)—is

necessary and fundamental in generalization. Of course,

there are other researchers who emphasize the fundamen-

tal, genetic role of invariant acting in the construction of an

intentional generalization (Dörfler, 1991; Garcia-Cruz &

Martinón, 1997; Iwasaki & Yamaguchi, 1997). In this

article, we pursue the cognitive perception perspective in

patterning.

Especially in the case of patterning tasks that involve

figural cues, we note that among the most important per-

ception types that matter is visual perception. Visual

perception involves the act of coming to see; it is further

characterized to be of two types, namely, sensory percep-

tion and cognitive perception. Sensory (or object)

perception is when individuals see an object as being a

mere object-in-itself. Cognitive perception goes beyond the

sensory when individuals see or recognize a fact or a

property in relation to the object. For example, young

children who see consecutive groups of figural cues such as

the Adjacent Squares Pattern in Fig. 1 as mere sets of

objects exhibit sensory perception. However, when they

recognize that the cues taken together actually form a

pattern sequence of objects, they manifest cognitive per-

ception. Cognitive perception necessitates the use of

conceptual and other cognitive-related processes, enabling

learners to articulate what they choose to recognize as

being a fact or a property of a target object. It is mediated

in some way through other types of visual knowledge that

bear on the object, and such types could be either cognitive

or sensory in nature. In the rest of the article, we address

issues relevant to middle school students’ cognitive per-

ceptions of figural-based patterns. Foregrounding cognitive

perception in pattern formation and in the interpretation of

a generalization, in fact, has allowed us to investigate how

the students see aspects of patterns they find relevant which

consequently influence the content and structure of gener-

alizations they produce, including elements that constitute

the structure of their cognitive perception in relation to

these special types of objects.

When Duval (1998) claims that ‘‘there are various ways

of seeing a figure’’ (p. 39), he is, in fact, referring to a

cognitive perception of the figure. Duval identifies at least

two ways in which learners manifest their recognition of

the figure, that is, perceptual and discursive. Perceptual

apprehension involves seeing the figure as a single gestalt.

For example, a student might see a quadrilateral in the

representational context of a roof or the top part of a table.

Discursive apprehension involves seeing the figure as a

configuration of several constituent gestalts or as sub-

configurations. For example, another student might see the

same quadrilateral as consisting of sides that are repre-

sented by line segments. The shift from the perceptual—

seeing objects as a whole—to the discursive—seeing

objects by parts—is indicative of a dimensional change in

the cognitive perception of the figure. In relation to figural-

based patterns, students who, on the one hand, perceptually

apprehend, say, the cues in Fig. 1 might see squares that

grow by the stage (for e.g.: stage 1 has one square, stage 2

has two squares, etc.). On the other hand, those who dis-

cursively apprehend the same cues might see squares that

are produced either by repeatedly adding three sides to

form a new square, a constructive generalization, or by first

constructing the appropriate number of squares, multiply-

ing that number by 4 since there are four sides to a square,

and finally seeing overlaps (for e.g.: stage 2 has two groups

of four sides with an overlapping ‘‘interior’’ side, pattern 3

has three groups of four sides with two overlapping

‘‘interior’’ sides. etc.), a deconstructive generalization.

Also, Duval (2006) foregrounds the cognitively complex

requirements of semiotic representations in both perceptual

and discursive domains. Especially in the case of patterning

in algebra, because there are many different ways of

expressing a generalization for the same pattern, the pri-

mary resolve involves assisting learners to recognize the

viability and equivalence of several generalizations that are

drawn from several ‘‘semiotic representations that are

produced within different representation systems’’ (p. 108).

For example, Dung (see Figs. 2, 3) obtained his general

formula by initially manipulating the corresponding

numerical cues that he later justified figurally, while Chuck

(see Fig. 4) established his formula from the available

figural cues. Both learners operated under two different

representational systems and, thus, produced two different,

but equivalent, direct expressions for the same pattern.

3 Methodology

In Fall 2005 and Fall 2006, the first author collaborated

with two middle school mathematics teachers in
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developing and implementing two related design-driven

teaching experiments that involve patterning and general-

ization in algebra. Pre- and post-clinical interviews with

the participating students were also conducted by the sec-

ond author. Learnings from the pre-interviews were

incorporated in the evolving teaching experiments with the

participants, and the post-interviews were meant to assess

students’ abilities to establish and justify their generaliza-

tions, including the extent of influence of classroom

practices in their developing capacity to generalize. In Fall

2005, the sixth-grade class consisted of twenty-nine stu-

dents (12 males, 17 females, mean age of 11). In Fall 2006,

three students moved to a different school and were

replaced with six new students.

Intrinsic to classroom teaching experiments that employ

design research are two objectives, that is, developing an

instructional framework that allows specific types of

learning to materialize and analyzing the nature and content

of such learning types within the articulated framework.

Thus, in every design study, theory and practice are viewed

as being equally important, which includes rigorously

developing and empirically justifying a domain-specific

instructional theory relevant to a concept being investi-

gated. Further, the content of the proposed instructional

theory involves a well-investigated learning trajectory and

appropriate instructional tools that enable student learning

to take place in various phases of the trajectory. Finally,

instruction in design studies is characterized as having the

following elements: it is experientially real for students; it

enables students to reinvent mathematics through, at least

initially, their commonsense experiences, and; it fosters the

emergence, development, and progressive evolution of

student-generated models.

One instructional objective of the classroom teaching

experiments on patterning and generalization involves

providing students with an opportunity to engage in prob-

lem-solving situations that would enable them to

meaningfully acquire the formal mathematical require-

ments of algebraic generalization. We both were cognizant

of the fact that our students’ thinking could possibly go

through generalizing stages or levels perhaps similar to the

ones that the students in Radford’s (2006) study went

through. We were also aware that some generalizing situ-

ations that our students would tackle would be real and

others experientially real in the sense that they would not

W-Dot Sequence Problem.  Consider the following sequence of W-patterns 

below.

Pattern 1                     Pattern 2             Pattern 3 

A.  How many dots are there in pattern 6? Explain.  

B.  How many dots are there in pattern 37? Explain.  

C.  Find a direct formula for the total number of dots D in pattern n. Explain how 

you obtained your answer. If you obtained your formula numerically, explain it in 

terms of the pattern of dots above.  

D.  Zaccheus’s direct formula is as follows: D = 4(n + 1) – 3. Is his formula 

correct?  Why or why not? If his formula is correct, how might he be thinking 

about it? Which formula is correct: your formula or his formula? Explain.  

E.   A certain W-pattern has 73 dots altogether. Which pattern number is it? 

Explain.

Fig. 2 W-dot pattern task in

compressed form

+ 1+ 1+ 1Fig. 3 Dung’s figural

justification of the W-dot

pattern in Fig. 2

4 4    +   2(3)4   +  (1)3

Fig. 4 Chuck’s constructive generalization for the pattern in Fig. 1
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need to actually experience such situations but ‘‘should be

able to imagine acting’’ in them (Gravemeijer, Bowers, &

Stephan, 2003, p. 52). Considering the fact that we both

shared Freudenthal’s (1991) views about the nature of

mathematics and mathematical activity, it was not difficult

for us to subscribe to the instructional theory of Realistic

Mathematics Education (RME). In RME, learners use

models of their informal mathematical processes to assist

them to develop models for more formal processes, and

being able to successfully transition is an indication that

they are constructing a new mathematical reality. Formal-

izing is, thus, seen as ‘‘growing out of their mathematical

activity’’ and mathematizing, more generally, involves

‘‘expanding [their] common sense’’ with the same reality as

‘‘experiencing’’ in everyday life (Gravemeijer & Doorman,

1999, p. 127).

In the Fall 2005 experiment, we used two algebra units

in the Mathematics-in-Context (MiC) curriculum that

adhere to RME. Also, taking note of the algebra require-

ments of the California state standards for sixth graders, we

selected sections from the units Expressions and Formulas

(Cole & Burrill, 2006) and Building Formulas (Burrill,

Cole, & Pligge, 2006) that became the basis of a three-

phase classroom teaching experiment on algebraic gener-

alization. The two algebra units, which correspond to the

first two phases in the teaching experiment, contained

activities that fostered the development of algebraic gen-

eralization through a series of horizontal and vertical

mathematization tasks. According to Treffers (1987), hor-

izontal mathematization involves transforming real and

experientially real problems into mathematical ones by

using strategies such as schematizing, discovering relations

and patterns, and symbolizing. Vertical mathematization

involves reorganizing mathematical ideas using different

analytic tools such as generalizing or refining of an existing

model. In both units, students first explored horizontal

activities that allowed them to build an informal mathe-

matical model. They then engaged in vertical activities.

In the Expressions and Formulas unit (Cole & Burrill,

2006), each section had the students starting out with a

problem situation that involved using an arrow language

notation to initially organize the situation and later to

express relationships between two relevant quantities. An

example is shown in Fig. 5. The arrow notation was meant

to articulate the different numerical actions and operations

that were needed to carry out a string of calculations in an

activity. Also, the task situations were either stated in

words or accompanied by tables, and they contained items

that necessitated either a straightforward or a reverse cal-

culation. The Patterns section in the Building Formulas

unit (Cole, Burrill & Pligge, 2006) was the only one that

we used in the teaching experiment because we were

working within the stipulated sixth-grade algebra

requirements of the state’s official mathematics framework.

In this section, arrow language was employed less in favor

of recursive formulas and direct formulas in closed, func-

tional form. The students were asked to deal with problem

situations that consistently contained the following tasks

relevant to generalizing: extending a near generalization

problem physically (for example: drawing or demonstrat-

ing with the use of available manipulatives) and/or

mentally (reasoning about it logically); calculating a far

generalization1 task using either a figural or a numerical

strategy; developing a general formula recursively and/or

in closed, functional form, and; solving problems that

involve inverse or reverse operations. In all problem situ-

ations, tables were presented and employed as an

alternative representation for organizing the given data.

Finally, students dealt with tasks that asked them to reason

and to make judgments about the equivalence of several

different formulas for the same problem situation.

In the third phase of the teaching experiment, we asked

the students to work through several de-contextualized

patterning problems whose basic structure was similar to

the ones that have been described in the paragraph above

(see, for e.g., Fig. 2). Also, we developed problems that

necessitated the students to develop both numerical and

figural generalization. We note that in all generalizing

situations that the students had to deal with, we required

them to establish and justify their constructed generaliza-

tions. We saw the justification of their generalizations to be

equally as important as their generalized statements. Of

course, justification could mean many things (cf. Lannin,

2005), however, considering the cognitive level of the

students who have just begun learning domain-specific

knowledge and practices in algebra, we more or less con-

fined the notion of justification to their capacity to reason,

in the sense following Hershkowitz (1998), ‘‘to understand,

to explain, and to convince’’ (p. 29). In fact, we share

Lannin’s (2005) perspective, which he demonstrated in his

work with 25 US sixth graders, when he pointed out how

justification seems to have been relegated to the ‘‘realm of

geometric proofs’’ when, in fact, students’ justifications in

the context of generalization could ‘‘provide a window for

viewing the degree to which they see the broad nature of

their generalizations and their view of what they deem as a

socially accepted justification’’ (p. 232).

In the Fall 2006 three-phase experiment, the seventh-

grade class used Building Formulas and portions of Pat-

terns and Figures (Spence, Simon, & Pligge, 2006) in the

first two phases, with the third phase the same as in the

description above.

1 Consider a sequence function f: n ? R whose domain is the set of

natural numbers. We arbitrarily set our far generalization task to be

those cases where n ‡ 10.
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4 Constructive versus deconstructive generalizations

A constructive generalization of a linear figural pattern

refers to those direct or closed degree-1 polynomial forms

which learners easily abduce or induce from the available

cues as a result of cognitively perceiving figures that struc-

turally consist of non-overlapping constituent gestalts or

parts (see Rivera & Becker, 2007, for a discussion involving

abduction and induction). We classify Dung’s formula,

D = n · 4 + 1, for the W-dot Pattern in Fig. 2 as a direct

constructive generalization that exhibits the standard linear

form y = mx + b (see Fig. 3). Chuck’s formula for the pat-

tern in Fig. 1, on the other hand, is a direct one with an

equivalent nonstandard linear form (Fig. 4). A deconstruc-

tive generalization of a linear figural pattern applies in cases

in which learners generalize on the basis of initially seeing

overlapping sub-configurations in the structure of the cues.

Consequently, the corresponding general linear form

involves a combined addition-subtraction process of sepa-

rately counting each sub-configuration and taking away

parts (sides or vertices) that overlap. For example, the gen-

eral form T = 4n – (n – 1) for the pattern in Fig. 1 involves

counting squares, multiplying them by 4, and then taking

away the overlapping interior sides (Fig. 6). Thus, while

both constructive and deconstructive generalizations yield a

direct, closed generalized formula, only those we call

deconstructive involve visualization with overlapping of

sections of the pattern, yielding a formula including sub-

traction of those portions counted twice (Table 1).

Several research studies at the middle school level

have provided sufficient evidence that shows learners’

proclivities towards producing more constructive than

Fig. 5 Arrow string example

(Cole & Burrill, 2006, p. 28)

1(4) - 0

No overlap.
interior side.

3(4) – 2 2(4) – 1

Take away 2 overlappingTake away 1 overlapping

interior sides.

Fig. 6 A deconstructive generalization for the pattern in Fig. 1
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deconstructive generalizations. For example, when Rob-

ertson and Taplin (1995) asked 40 Australian 7th graders

to establish a generalization for the pattern sequence in

Fig. 1, while none of them could state an algebraic gen-

eralization, their incipient generalizations took the form of

direct and standard constructive verbal statements. Seven

students perceived four toothpicks that pertained to the

original square in stage 1 and the repeated addition of three

toothpicks each time from stage to stage. There were eight

students who offered the nonstandard verbal constructive

generalization, 3(n – 1) + 4, although none offered an

articulation that was as clear as Chuck’s. Only one student

began to think about the pattern in a deconstructive way;

however, the student was not able to figure out how many

toothpicks to take away despite seeing the pattern as

consisting of overlapping squares. When the same problem

was given to a cohort of four hundred thirty 12- to 15-year-

old Australian students, findings from English and

Warren’s (1998) study also showed that, among the less

than 40% of students who successfully obtained a gener-

alization, they expressed their generalities on this and other

patterning tasks in constructive terms similar to what

Robertson and Taplin (1995) found. For example, a student

developed the general expression 2x + (x + 1), where 2x

refers to the top and bottom row sticks and (x + 1) to the

column sticks, after seeing two invariant properties within

and across cues.

4.1 Origins of factual generalization

So, while descriptions of constructive generalities for

figural patterns abound, the more important question

involves the epigenesis of such types of generalization—

that is, how does constructive objectification come about?

First, Radford (2003) notes that there are different semiotic

means of objectification in relation to pattern cues, that is,

possibly different ways in visibly surfacing attributes and

properties of, or relationships among, cues with the use of

signs and relevant processes or operations. Second,

Radford (2003, 2006) advances the view that there are at

least three layers of algebraic generalization—factual,

contextual, and symbolic—based on his 3-year longitudinal

work with middle and junior high school students. Third,

purposeful instruction through well-designed classroom

teaching experiments could scaffold the development of

closed forms of constructive generalizations in middle

school children (Lannin, Barker, & Townsend, 2006;

Martino & Maher, 1999; Steele & Johanning, 2004). In the

following paragraphs, we dwell on cognitive-related issues

at the entry stage of generality, that is, factual, since both

contextual and symbolic layers are marked indications of

further essentializing and increasing formality on the basis

of the stated factual expressions.

At the pre-symbolic stage of factual generalizing

involving increasing linear patterns, students often start

with a recursive relation that is both additive and arith-

metical in nature. As a matter of fact, studies done in

different settings (for e.g., countries) and in different

contexts (prior to formal instruction in algebra, during and/

or after a teaching experiment, etc.) with middle school

children have asserted the use of recursion as the entry

(and, in some cases, the final) stage in factual generalizing

(Becker & Rivera, 2006a, b; Bishop, 2000; Lannin, Barker,

& Townsend, 2006; Orton, Orton, & Roper, 1999; Radford,

2003; Sasman, Olivier, & Linchevski, 1999; Swafford &

Langrall, 2000). For example, in the case of increasing

figural sequences, it is usually easy to first perceive the

dependent terms as constantly being increased by a com-

mon difference. As soon as this takes place, students’

thinking is then characterized in two ways. First, they see

two consecutive cues as being different and, using the

method of ‘‘differencing’’ (Orton & Orton, 1999, p. 107),

the same number of objects is constantly being added from

one cue to the next, leading to a recursive, arithmetical

generalization (of the type un = un–1 + c, where c is the

common difference). Then, some students further develop

emergent factual generalizations from the arithmetical

generalization. Two possible factual generalizations

involving the pattern in Fig. 1 are as follows:

4 + 3 + 3 + 3 + …; 1 + 3 + 3 + 3 + … Second, a struc-

tural similarity is observed among and, thus, connects two

Table 1 Summary of problems

and sample constructive and

deconstructive generalizations

Figure # Possible constructive

generalization

Possible deconstructive

generalization

1: Square toothpick 3(n – 1) + 4; 2n + (n + 1) 4n – (n – 1)

2: W dot 4n + 1 4(n + 1) – 3

7: Circles (n + 1) + (n + 3) 2(n + 3) – 2

8: Losing squares –2n + 34 32 – 2(n – 1)

9: Triangular toothpick 2n + 1 3n – (n – 1)

10: Circle dots n + (n – 1) 2n – 1

14: Two layer circles 2n + 3 (2n + 2)2 – (2n + 1)
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or more cues in a relational way. Especially in the case of

increasing linear patterns that visually demonstrate growth,

constructing a succeeding cue from a preceding one often

involves a straightforward process of simply adding a

constant number of objects on particular locations of the

preceding cue. That is, the basic structure of the unit figure

is perceived to stay the same despite the fact that equal

amounts of objects are conjoined in various parts of the

figure in a particular, predictable manner. Such method of

construction does not necessitate making a figural change

(in Duval’s 1998 sense) on the part of the learner. Also, it

seems to be the case that almost all linear patterns that

exhibit growth tend to be ‘‘transparent’’ in the sense that

the closed formulas associated with them are somehow

visibly embodied in each cue (following Sasman, Olivier,

& Linchevski, 1999). Radford (2003) further notes how in

the factual stage of generalizing, invariant acting from one

cue to the next operates at the concrete level that eventually

leads to the abstraction of a numerical or operational

scheme for the figural pattern. Hence, generalizations that

have been mediated by such actions tend to be conse-

quentially constructive and almost always standard

(whether rhetorical, syncopated, or symbolic in form; cf.

Sfard, 1995).

Even with patterning tasks that require middle school

children to first specialize on the route to establishing a

generality as a consequence of not being provided with the

usual consecutive sequence of figural cues (i.e., the initial

cases such as the pattern in Fig. 1), middle school children

would be predisposed to establishing constructive gener-

alizations. For example, Swafford and Langrall (2000)

asked ten middle- to high-math achieving 6th grade stu-

dents to solve the borders pattern task prior to a formal

course in algebra. The task began with a drawn 10 · 10

square grid in which the four borders of the grid are shaded.

The students were asked to figure out the total number of

squares on the border, and the task was repeated in a 5 · 5

grid. The students were then asked to describe how to

determine the total number of squares in the border of an

N · N grid. Results on this task show that, while none of

the students offered a recursive rule, the general verbal

descriptions ranged in form from the constructive to the

deconstructive. When translated in symbolic form, two of

the verbal constructive generalizations obeyed the follow-

ing forms: (1) n + n + (n – 2) + (n – 2); (2) n + (n – 1) +

(n – 1) + (n – 2). We found it interesting that only one

student offered a verbal deconstructive generalization

that followed the form 4n – 4. When the above task and

other similar ones were given to eight 7th grade students

in Steele and Johanning’s (2004) study in the context of

a problem-solving enriched teaching experiment, only

three students came up with deconstructive symbolic

generalizations.

4.2 Operations used in developing generalizations

Another relevant epigenetic issue that we also considered in

relation to patterning involves the operations that are

employed in developing a constructive generalization. For

example, in the case of increasing linear patterns, students

need to have solid grounding in addition and multiplication

of whole numbers. With decreasing linear patterns, they need

to know how to manipulate addition, subtraction, and

multiplication of integers (cf. English & Warren, 1998;

Stacey & MacGregor, 2001). Let us deal with increasing

linear patterns first. When 8th graders in Radford’s (2002)

study were asked to establish a generalization for the Circles

Pattern in Fig. 7, a group of three students did not immedi-

ately suggest a recursive rule, which actually was offered

next, because what they perceived first was an additive

relationship between the top and the bottom rows [‘‘add 1 at

the bottom’’ and ‘‘add 3 on top’’ which, when expressed in

the general case, takes the form (n + 1) + (n + 3)]. This

situation engenders the question of how is it that middle

school children do not seem to easily perceive a decon-

structive generalization such as 2(n + 3) – 2 (i.e., seeing a

rectangular array of two rows of circles and then taking away

two corner circles in the bottom row)? Do the operations of

multiplication and subtraction, which are often employed in

stating a deconstructive generalization, play a role?

Gelman and colleagues (Gelman, 1993; Gelman &

Williams, 1998; Hartnett & Gelman, 1998) have advanced

and empirically justified a rational constructivist account of

cognitive development among young children which

presupposes the existence of innate or core skeletal mental

structures (such as arithmetical structures) that enable them

to easily develop and process new information as long as it

is consistent with their core structures. Hartnett and

Gelman (1998) write:

As long as inputs are consistent with what is known,

then novices’ active participation in their learning can

facilitate knowledge acquisition. But when available

mental structures are not consistent with the inputs

meant to foster new learning, such self-initiated

interpretative tendencies can get in the way (p. 342).

In the case of middle school children who develop

constructive generalizations, perhaps it is the case that

their constructive generalizations, which involve using the

operations of addition and multiplication of whole

numbers, map easily onto their current understanding of

1 2 3

Fig. 7 Circles pattern
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what numbers are and how such entities are used,

represented, and manipulated. Thus, constructive general-

izing will proceed naturally and smoothly. Moreover,

middle school children are likely to associate increasing

growth patterns with counting objects over several non-

overlapping constituent gestalts and then using the addition

and multiplication of counting numbers as useful operators

in obtaining a final count. Hence, their core arithmetical

structures assist in this developing capacity towards

making constructive generalizations. This being the case,

very few students will apprehend increasing patterns as

being embedded in a figural process that involves the

operation of subtraction, that is, by utilizing a figural

change process of seeing sub-configurations and removing

parts that overlap.

Many decreasing linear patterns can also be expressed as

constructive generalizations in the form y = mx + b, where

m \ 0. The rational constructivist perspective of Gelman

and colleagues could be used to explain why many middle

school children find generalizations involving negative

differencing such a difficult task to accomplish. In Year 2 of

our longitudinal study, we saw that the seventh graders’

primary cognitive difficulty in seventh grade with

decreasing patterns prior to a teaching experiment was how

to handle negative differencing and, especially, how to

perform operations involving negative and positive integers

in which the rules were not consistent with their existing

core arithmetical domain (Becker & Rivera, 2007). While

we found that they were attempting to ‘‘transfer’’ the

existing generalization process they established in the case

of increasing linear patterns, they could not, however, make

sense of the negative integers and the relevant operations

that were used with such types of numbers. For example,

Tamara was first asked to establish and justify generaliza-

tions for two increasing linear patterns that she

accomplished successfully. Her generalizations were con-

structive and standard, and she was also able to justify the

equivalence of several linear forms with the ones she

developed. When Tamara was then asked to obtain a gen-

eralization for the Losing Squares Pattern in Fig. 8, she

immediately saw that every stage after the first involves

‘‘minusing 2’’ squares. She then used multiplication to

count the total number of squares at each stage. When she

then proceeded to obtain a formula, she was perturbed by

the negative value of the common difference and said, ‘‘I

was trying to think of, just like the last time, I was trying to

get a formula. … I was thinking of trying to do with the

stage number but I don’t get it.’’ The presence of the neg-

ative difference, including the necessity of multiplying two

differently signed numbers, partially and significantly hin-

dered her from applying what she knew about constructing

general formulas in the case of increasing patterns. In fact,

she had to first broaden her knowledge of multiplication to

include two factors having opposite signs before she was

finally able to state the form S = –2 · n + 34. Further,

while she could explain what the numbers m and b meant in

the case of increasing patterns which for her took the con-

structive form y = mx + b, she was unable to justify the

forms she established for decreasing linear patterns.

4.3 Factors affecting students’ ability to develop

constructive generalizations

Even if middle school children are capable of producing

more constructive than deconstructive generalizations,

there are still other factors that influence their ability to

establish a constructive generalization. Language is an

important factor (MacGregor & Stacey, 1992; Radford,

2000, 2001; Stacey & MacGregor, 2001). Based on results

drawn from Year 7 to Year 10 (ages 12–15) Australian

students and their reflections on a national recommendation

for a pattern-based approach to algebra, MacGregor and

Stacey (MacGregor & Stacey, 1992; Stacey & MacGregor,

2001) surface students’ difficulties in ‘‘transition[ing] from

a verbal expression to an algebra rule’’ since ‘‘students with

poor English skills’’ are often unable to ‘‘construct a

coherent verbal description’’ and many of their ‘‘verbal

description[s] cannot be [conveniently and logically]

translated directly to algebra’’ (MacGregor & Stacey, 1992,

pp. 369–370). Stacey and MacGregor (2001) foreground

the importance and necessity of the ‘‘verbal description

phase’’ in the ‘‘process of recognizing a function and

expressing it algebraically’’ (p. 150). Radford (2006) and

Küchemann (1981) have also surfaced the problematic

status of variable use in students’ expressions of generality.

In Radford’s (2006) layers of algebraic generalization, the

presence and use of variables in their proper form and

meaning signal the accomplishment of the final stage of

symbolic generalization. Radford (2006) notes that while

some students may display knowledge of using algebraic

Stage 1 Stage 2

Stage 3

Fig. 8 Losing squares pattern
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language to express a constructive generalization, the

variables used in such contexts have to reach their objec-

tive state of being subjectified and disembodied

placeholders. Küchemann (1981) found that 13 to 15 year-

old students tend to interpret variables in patterning situa-

tions narrowly in terms of concrete objects rather than as

unknown quantities. Radford’s (2001) characterization of

algebraic language at the layer of symbolic generalizing is

best exemplified in the thinking of two small groups of 8th

graders on the Triangular Toothpick Pattern in Fig. 9 who

obtained the generalities (n + n) + 1 and (n + 1) + n and

perceived them as being different on the basis of having

been derived from two different actions. Radford (2001)

astutely points out that the use of variables to convey a

generality has to evolve. In particular, when students

employ a variable in relation to the independent term of the

general expression, they need to eventually see that the

variable has to shift meaning from being a ‘‘dynamic

general descriptor of the figures in [a] pattern’’ to being ‘‘a

generic number in a mathematical formula’’ (Radford

2000, p. 255). Thus, their general algebraic language in

expressions of generality involves semantically transposing

the independent variable from its ordinal character

(indexical, positional, deictically based) to the cardinal (as

a ‘‘number capable of being arithmetically operated’’

(ibid)).

Another factor that influences middle school children’s

ability to establish constructive generalizations involves

their capacity to use analogies. Since all linear patterns take

the constructive general form y = mx + b or some other

linear variant, perceiving and using analogies can quickly

facilitate the generalizing process. While middle school

children are likely to offer a constructive recursive

expression, some have been documented to be capable of

developing constructive analogical expressions in varying

formats even prior to a formal study of algebra and alge-

braic notation (Becker & Rivera, 2006a, b; Bishop, 2000;

Lannin, 2005; Stacey, 1989; Swafford & Langrall, 2000).

Performing analogy involves ‘‘perceiv[ing] and operat[ing]

on the basis of corresponding structural similarity in

objects whose surface features are not necessarily similar’’

(Richland, Holyoak, & Stigler, 2004, pp. 37–38). In Year 1

of our longitudinal study, we identified a possible source of

difficulty among the sixth grade students in relation to

constructing algebraically useful analogies for particular

figural-based patterns. We distinguished between students

who perceived and generalized additively from those who

employed a multiplicative approach. Those students who

used a figural additive strategy, on the one hand, were not

thinking in analogical terms at all, and they would fre-

quently employ unit counting from cue to cue. Further,

when some of them were provided with manipulatives to

copy figural cues that had been drawn on paper, their

manipulative-constructed cues did not preserve the struc-

ture of individual cues; in fact, they used the manipulatives

only as counters. For example, when Dina was asked to

obtain a generalization for the total number of dots in the

Circle Dots Pattern in Fig. 10, her circle chip-based cues

in Fig. 11 revealed the extent of her perception of the cues,

that is, the cues just kept going up by twos and Dina

constructed no particular pattern with the dots as can be

seen in Fig. 11. Those who used a figural multiplicative

strategy, on the other hand, initially employed analogical

reasoning. Employing multiple instead of unit counting,

their general statements reflect the invariant structure they

thought was evident from cue to cue.

5 A sociogenetic account of the development of two

constructive generalization types in a middle school

classroom context

In this section, we describe how the middle school students

in our ongoing longitudinal work with them established

five classroom mathematical practices involving construc-

tive generalization over the course of two teaching

experiments on patterning and generalization. The first

teaching experiment was conducted in Fall 2005 when they

were in sixth grade beginning a formal course in algebra;

the second experiment took place in Fall 2006. We note

1 2 3

Fig. 9 The triangular toothpick pattern

4321

Fig. 10 The circle dots pattern

Pattern 4Pattern 3Pattern 2

Fig. 11 Dina’s interpretation of the circles dots pattern using colored

chips
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that very few studies at the middle school level have

focused on how children develop a generalization practice

in socio-genetic terms. Thus, in the narrative that follows,

we aim to highlight how certain legitimate mathematical

practices could be viewed not as conceptual, received

objects that learners simply acquire rather unproblemati-

cally but as part of their socio-cultural-developmental

transformation drawn and embodied in their activity with

other learners.

5.1 Classroom practices in Year 1

In Fall 2005, Mrs. Carrie, a sixth-grade teacher, and the

first author implemented a teaching experiment based on

two algebra units of the Mathematics-in-Context (MiC)

curriculum which provided Mrs. Carrie’s class of 29 sixth-

grade students (12 males, 17 females, mean age of 11) an

opportunity to learn and establish domain-specific class-

room mathematical practices relevant to patterning and

generalization. Four such practices were constructed and

became taken-as-shared in collaborative activity, that is,

these practices became the norm for the class as a whole.

Two of the practices had their origins in the first MiC unit

they used in class (i.e., Expressions and Formulas; Cole &

Burrill, 2006). First, the students initially employed arrow

strings as a method for organizing a sequence of arith-

metical operations. They also explored the notion of

equivalence through arrow strings that could either be

shortened or lengthened depending on the nature of the

numbers being manipulated. Second, the use of the arrow

strings evolved as the students were asked to deal with

more complicated problem situations that were still arith-

metical in context. In several more sessions, they

developed a connection between constructing an arrow

string and a formula in such a way that they used arrow

strings as a means of describing invariant operational

schemes in the context of generalizing situations. In tran-

sitioning from the arrow strings to formulas, the students

developed an understanding that a formula, like the arrow

strings, consists of a starting number or input, a rule in the

form of a sequence of operations, and an output value or

expression (see Fig. 5).

Two additional practices emerged when the students

began to generalize figural-based patterns that have been

initially drawn from the Patterns section in the MiC unit

Building Formulas (Burrill, Cole, & Pligge, 2006). The

third classroom practice that became taken-as-shared

involves generalizing figurally and is exemplified in the

classroom episode below in which the students were

engaged in developing a formula for the total number of

grey and white tiles for new path number n whose figural

cues are shown in Figs. 12 and 13. Initially, the students

explored specific instances when n = 3–5, 9, 15, 30, and

100. In particular, they were not merely asked to obtain the

output values but also to describe the patterns without

actually drawing them explicitly. The class then generated

a recursive rule for each tile type. In the episode below, the

discussion that took place between the first author and the

class shifted from the recursive rules to the construction of

a direct, closed general expression.

FDR: Suppose I want you to describe new path 1,025.

That’s a big number. I want you to figure out the total

number of white and grey tiles for new path 1,025.

Emily, how do we do this?

Emily: The whites will be 2,054?

Ford: That’s the grey.

Emily: It is?

Ford: Yeah, the white’s the middle.

Emily: 1,029.

FDR: Why 1,029?

Emily: Because it’s in the middle and in the corners it

has four.

FDR: Alright. What about the grey ones? Mark.

Mark: The grey ones are 2,052.

FDR: Why 2,052?

Mark: Because you added the top and the bottom and

then you add the two middle.

FDR: Okay, this will be a challenge for some of you.

Can you find a formula for me? Suppose, I say, I’m

going to use a variable, new path number n. n could

mean 1, 2, 3, 4, all the way to 1,025. All the way to a

billion.

Dung: n plus 4 equals white.

FDR: Why n + 4 equals white?

Dung: Coz n is the number of whites in the middle plus 4

whites on the sides.

FDR: Does that make sense? [Students nodded in

agreement.] What about the grey ones? The grey ones

are a bit more difficult. What’s a formula for the number

of grey ones?

Path Number 5Path Number 4Path Number 3

Fig. 12 Urvashi’s tile patterns (Burrill, Cole, & Pligge, 2006, p. 2)

New Path Number 3 

Fig. 13 Urvashi’s design for new path 3 (Burrill, Cole, & Pligge,

2006, p. 3)
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Che: n times 2 and then you plus 2.

FDR: It’s n · 2 + 2. What about if I express it as n plus?

Deb: n plus n plus 2.

FDR: n + n + 2. Are they the same?

Jack: Yes.

FDR: Why?

Nora: You have two grey ones.

FDR: Yes, you have the two gray ones plus the two on

both sides. So now if I know these formulas here, can I

figure out new path number 50,000?

Students: Yeah.

FDR: So how do we do this, using the formula here.

Number of whites. n plus 4 for whites. What do we do?

Tamara: It’s 50,004.

FDR: What about the grey ones?

Mark: 100,002.

One indication of the students’ individual appropriation of

learnings from the above discourse involves their work on

succeeding figural-based patterns which were mostly standard

constructive generalizations that have been primarily estab-

lished in figural terms. That is, what the students acquired

from the above discussion was the use of figural generalizing

in surfacing structural similarities among the available cues

and, hence, visually identifying properties or relationships that

remained stable and invariant over a sequence of cues.

Further, they learned how to express those properties or

relationships in algebraic form and the necessity of justifying

the reasonableness and validity of the forms.

The fourth classroom practice came about when the stu-

dents tackled the Two Layer Circles Pattern (Fig. 14). All

the students initially perceived a recursive relation with the

constant addition of one circle per layer. Two groups of

students presented the formula C = (n + 1) + (n + 2),

where n represents figure number and C stands for the total

number of circles, which they established analogically. That

is, since Fig. 1 had two and three circle rows, Fig. 2 had

three and four circle rows, and so on, then figure n had to

have (n + 1) and (n + 2) circle rows. The first author then

suggested organizing the two sets of numerical values in the

form of a table without making any recommendation that

might have encouraged a numerical strategy. The basic

purpose in introducing the table in several classroom

instances was primarily to foster students’ growth in their

representational skills, that is, patterns could also be

expressed in tabular form. In the classroom episode below,

Anna shared her group’s thinking with the class which

eventually was taken as shared and became the fourth

classroom practice, that of generalizing numerically using

differencing, which was reflective of an appropriation of a

standard institutional numerical strategy.

Anna: We made up a formula. Like we got the figures

until figure 5, and we tried it with other ones. We got

n · 2 + 3, where n is the figure number and timesed it

by 2. So 5 · 2 equals 10, plus 3, that’s 13. So for figure

25, it’s 53.

FDR: I like that formula. So tell me more. So your

formula is?

Anna: n · 2 + 3.

FDR: So how did you figure this out?

Anna: First we were like making the numbers to 25. We

kept adding 2 and for figure 25, it was 53.

FDR: Wait. So you kept adding all the way to 25?

Anna: Yeah… Then we used our chart. Then finally we

figured out that if we timesed by 2 the figures and plus 3,

that would give us the answer.

FDR: Does that make sense? [Students nodded in

agreement.] So what Anna was suggesting was that if

you look at the chart here, Anna was suggesting that you

multiply the figure number by 2, say, what’s 1 · 2?

Tamara: 2.

FDR: 2. And then how did you [referring to Anna’s

group] figure out the 3 here?

Anna: Because we also timesed it with figure number 13.

FDR: What did you have for figure 13?

Anna: That was 29. And then 13 · 2 equals 26 plus 3.

FDR: Alright, does that work? So what they were

actually doing is this. They noticed that if you look at the

table, it’s always adding by 2. You see this? [Students

nodded.] They were suggesting that if you multiply this

number here [referring to the common difference 2 by

figure number, say figure number 1, what’s 1 · 2?

Students: 2.

FDR: Now what do you need to get to 5? What more do

you need to get to 5? [Some students said ‘‘3’’ while

others said ‘‘4.’’] Is it 4 or 3?

Students: 3.

FDR: It’s 3 more. So what is 1 · 2?

Students: 2.

FDR: Plus 3?

Students: 5. [The class tested the formula when n = 2, 3,

and 25.]

5.2 An additional classroom practice in Year 2

In Fall 2006, the students were once again involved in a

teaching experiment that focused on linear patterning. While

Figure 1 Figure 2 Figure 3

Fig. 14 Two layer circles pattern
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the first author observed that the students, in seventh grade,

seemed to have remembered how to generalize patterns fig-

urally (weak) and numerically (strong), results of our clinical

interviews with a subgroup of ten students prior to the teaching

experiment confirmed this observation. In the classroom

episode below, the students were asked to obtain an algebraic

generalization for increasing and decreasing linear patterns in

both figural and numerical forms. Emma and her group (with

Drake below as a member) have been consistently applying

the shared practice of generalizing numerically. However,

Emma introduced her process of ‘‘zeroing out’’ in the case of

decreasing linear patterns that resulted in a further refinement

of the numerical generalizing process.

FDR: Alright. So I have my x and my y. [FDR sets up a

table of values consisting of the following pairs: (1, 17),

(2, 14), (3, 11), (4, 8), (5, 5), (6, 2).] So what’s the

answer to this one?

Drake: y = –3x + 20. [FDR writes the formula on the

board.]

FDR: This is always the problem, here [pointing to the

constant 20]. Before we figure that out, how did you

figure out the –3?

Drake: The difference between the ys, between the

numbers.

FDR: So what’s happening here [referring to the

dependent terms]. Is this increasing by 3 or decreasing

by 3?

Students: Decreasing by 3.

FDR: So if it’s decreasing by 3, what’s our notation?

Students: Negative.

FDR: Alright, so negative 3. So this one is clear

[referring to the slope]. Look at this. This one I get [the

slope]. If you keep doing that [i.e., differencing], it’s

always true. That’s why you have this. The difficult part

is this [referring to the constant 20].

Emma raised her hand and argued as follows:

Emma: If you did a negative times a positive, it’s gonna

be a negative. So what I’d do is zero it out.

FDR: So what do you mean by zero out?

Emma: So like if it’s –3 times 1, that’s –3 [referring to

the product of the common difference (–3) and the first

independent term (1)]. … So I’d zero out by adding 3.

FDR: So you try to zero out by adding 3. So, what does

that mean?

Emma: Coz a –3 plus 3 equals 0.

FDR: So what’s the purpose of zeroing out?

Emma: So it’s easier to add to 17. Coz if it’s 0, all you

have to do is add 17.

FDR: So you’re suggesting if you’re adding 3 here, if

this is –3 plus 3, that goes 0. So what do you do with the

plus 3 here?

Emma: Just remember it and write it down.

FDR: Suppose I remember it, adding 3. So how does that

help me?

Emma: Then ahm it’s easier to add to 17. So just add 17

[to 3 to get 20].

The class then tried Emma’s method in a different

example. The first author asked the class to first generate

a table of values, and they came up with the following (x,

y) pairs: (1, 10), (2, 8), (3, 6), (4, 4), (5, 2). Using Emma’s

method, one student offered the general formula y = –2x +

12, where the constant 12 was obtained after initially

adding the common difference and its opposite to get 0

(i.e., –2 + 2 = 0) and then adding 2 to the first dependent

term to yield the constant value of 12 (i.e., 2 + 10 = 12).

The class then verified that the formula worked in any

instance of the sequence. Finally, when the first author

asked if there was a limitation to Emma’s strategy, Emma

quickly pointed out that ‘‘it only works for 1’’ (i.e., when

the case of n = 1 is known) and that her method would fail

when the initial independent term was any other number

besides 1. Hence, the fifth mathematical practice that

became taken-as-shared was generalizing numerically

using Emma’s zeroing out strategy that was a further

refinement of an institutional practice.

Thus in the first 2 years of teaching experiments, five

fundamental mathematical practices were developed by the

class as part of the process of generalization: the use of

arrow strings to organize arithmetical operations; the con-

nection between arrow strings and formulas as a means of

describing invariance; figural generalization to arrive at a

direct expression for a pattern; numerical generalization to

arrive at a direct expression for a pattern; and the zeroing

out strategy to find the value of the y-intercept of a linear

pattern.

6 Middle school students’ capability in justifying

constructive generalizations

In various patterning studies that we have conducted with

several different cohorts of learners, we saw their justifi-

cation of a proposed generalization to be equally as

important as their statement of generalization. Justification

could mean many things (cf. Lannin, 2005), and consid-

ering the cognitive level of middle school students who are

still in the beginning phase of learning domain-specific

knowledge and practices in algebra, we more or less con-

fined the notion of justification to their capacity to reason,

‘‘to understand, to explain, and to convince’’ (Hershkowitz,

1998, p. 29). Also, Lannin has pointed out the need to view

justification in the context of generalization as ‘‘provid(ing)

a window for viewing the degree to which they see the
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broad nature of their generalizations and their view of what

they deem as a socially accepted justification’’ (p. 232).

Results of the Year 1 teaching experiment we imple-

mented when our students were in sixth grade indicate

differing levels of competence in the use of inductive

forms of justifications. In particular, based on a follow-up

clinical interview that we conducted with a group of 12

students in the class immediately after the closure of the

Year 1 teaching experiment, we found that students justi-

fied in several ways, as follows: (1) all of them employed

extension generation, that is, they used more examples to

verify the correctness of their rules; (2) some used a

generic case to show the perceived structural similarity;

(3) some employed formula projection, a type of figural-

based reasoning in which they demonstrated the validity of

their formulas as they see them on the given figures, and;

(4) some used formula appearance match, a type of

numerical-based reasoning in which they merely fit the

formula onto the generated table of values that they had

drawn from the figural cues (Becker & Rivera, 2007).

Lannin’s (2005) work with his 25 sixth-grade participants

used variations of strategies (1) and (2). We note that in

our study, because the students in sixth grade initially

developed the emergent practice of generalizing figurally,

they were in fact constructing and validating their direct

formulas at the same time. For example, Dung established

and justified his direct expression n + 4 for the total

number of white tiles in Fig. 13 as soon as he saw ‘‘the

number of white [square tiles] in the middle plus [the] 4

white [tiles] on the sides.’’ Also, Che, Deb, and Nora

established and justified their direct expressions, n · 2 + 2

when they perceived ‘‘two grey [rows] plus the two

squares on both sides [in a given figural cue].’’ All four

students came up with their inductive justifications above

after empirically verifying them on several extensions and

then either employing formula projection or imagining a

generic case that highlights the invariant properties com-

mon to all cues. The formula appearance match was used

only later after the class developed the emergent practice

of generalizing numerically.

When the students in our study fully appropriated the

above numerical strategies in establishing constructive

generalizations, as exemplified in the thinking of Anna and

Emma, we observed a shift from a figural to a numerical

mode of generalizing among them. In fact, in both the pre-

and post-clinical interviews in Year 2 of our study with the

same group of eight students who were interviewed in the

previous year, very few of them initiated a figural approach

and instead most preferred to develop a generalization

numerically. Consequently, such a shift affected their

capacity to justify algebraic generalizations correctly on

the basis of faulty responses that used either formula pro-

jection or formula appearance match. For example, Dung,

in two clinical interviews when he was in sixth grade,

primarily established and justified his generalizations fig-

urally, often with the use of a generic example. However,

in two clinical interviews when he was in seventh grade,

Dung primarily established his generalizations numerically

and justified inconsistently using formula projection. An

example of a faulty argument that uses formula appearance

match is exemplified in the thinking of Anna who first

developed the generalization D = n · 4 + 1 numerically

for the pattern in Fig. 2. When she was then asked to justify

her formula, she circled one group of four circles, two

groups of four circles, and three groups of four circles in

patterns 1, 2, and 3, respectively, beginning on the left and

then referred to the last circle as the y-intercept (Fig. 15).

As a matter of fact, in the post-interview in Year 2, only

three of the eight students saw the sequence in Fig. 2 in the

manner Dung perceived it (Fig. 3).

The phenomenological shift from the figural to numer-

ical modes in establishing generalizations involving

figural-based linear patterns among our middle school

participants is not uncommon in empirical accounts of

cognitive development. Induction studies in developmental

psychology have demonstrated shifts in children’s abilities

to categorize (from perceptual to conceptual; from object-

or attribute-oriented to relation-oriented, etc.). Also, Dav-

ydov (1990) has noted similar occurrences of change on the

basis of his work on generalization with Soviet children,

including his critique of mathematics instruction that seems

to favor one process over the other. Based on the empirical

data that we have collected over the course of 2 years in

our longitudinal study, the shift from the figural to the

numerical could be explained initially in terms of the

predictive and methodical nature of the established

numerical strategies. That is, the students found them to be

compact and easy to use particularly in far generalization

tasks in which they were asked to determine an output

value for a large input value. Of course, the same charac-

terization for numerical generalizations could also be

claimed in the case of figural generalizing. However, what

the students actually found difficult with the figural, which

could be avoided with the numerical, was the ‘‘cognitive

+ 1 
+ 1+ 1

Fig. 15 Anna’s figural

justification of the W-dot

pattern in Fig. 2
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perceptual distancing’’ that was necessary to: discursively

apprehend and capture invariance; selectively attend to

aspects of sameness and differences among cues; and

create a figural schema or a mental image of a consistent

proto-cue and then transform the schema or image to

symbolic terms. In terms of Radford’s (2006) definition of

pattern generalization—grasping of a commonality,

applying the commonality to all the terms in the pattern,

and providing a direct expression for the pattern—the

almost, albeit not fully, automatic process of numerical

generalizing requires only a surface grasp of a common-

ality (i.e., a common difference in the case of a linear

pattern) which would then be used to set up a direct

expression. In particular, when the students surfaced a

commonality among cues in a numerical generalizing

process involving linear patterns, most of them did not

even establish it figurally since the corresponding numer-

ical representation was sufficient for their purpose. We

should also note the influence of the ‘‘whole-number bias’’

(following Gelman and colleagues) in cases when the

students established their generalizations numerically, that

is, they found the numerical approach was easier to use in

patterning tasks that were increasing rather than

decreasing.

In articulating our argument of a shift in mode of gen-

eralizing that took place among the middle school children

in our study, we have already noted how most of them

could correctly establish constructive generalizations

numerically but had difficulty justifying them. Further, we

already discussed how some of them employed formula

projection in an inconsistent (faulty) manner. Another

significant source of difficulty in justifying was the stu-

dents’ misconstrual of the multiplicative term in the

general form y = mx + b for linear patterns. Towards the

end of the Year 1 teaching experiment, they would often

express their algebraic generalization in the form O = n ·
d + a, where the placeholder O refers to the total number

of objects being dealt with (like matchsticks, circles,

squares, etc.), n the pattern number, d the common dif-

ference, and a the adjusted value. For example, the general

form for the pattern sequence in Fig. 1 is T = n · 3 + 1.

The students would then justify the form by locating n

groups of three matchsticks respecting invariance along the

way. In the Year 2 study, they learned more about the

commutative property and then wrote all their generaliza-

tions in the equivalent form O = dn + a. However, they got

confused because they interpreted the expressions n · d

and d · n as referring to the same grouping of objects. For

example, in the clinical interviews that we conducted

immediately after the Year 2 teaching experiment, some of

those who wrote the form D = 4n + 1 for the sequence in

Fig. 2 justified its validity by looking for four groups of,

say, two circles in pattern 2 when, in fact, they should have

been looking for two groups of four circles. Thus, the

algebraic representation proved to be especially difficult

among those who established their generalizations numer-

ically because of misinterpretations involving some of the

mathematical concepts and properties relevant to integers

(such as the commutative law for multiplication).

7 Middle school students’ capability in constructing

and justifying deconstructive generalizations

Considering the results drawn from our longitudinal work

and relevant patterning studies discussed in this paper, we

can conclude with sufficient sample that the task of

establishing and justifying a deconstructive generalization

is difficult for most middle school children. Why it is so

remains an unresolved issue. We do not know the weight,

much less the content, of the contributing factors that

influence students’ capacity for deconstructive generaliz-

ing. Further, we remain unsure whether such factors are

developmental-sensitive, learning-driven, or something

else. It is certainly plausible to think that, from a rational

constructivist perspective, developing an operational

schema that is appropriate in a deconstructive generaliza-

tion could not be accomplished easily since both figural

and numerical requirements do not align or fit with the

existing core domain-specific structures of middle school

children.

Also, we considered the possibility that students with a

predominantly figural predilection to see patterns might be

more likely to succeed in deconstruction tasks than those

who generalize in a predominantly numerical mode. For

example, Emma, in a clinical interview before the Year 2

teaching experiment took place, initially employed a fig-

ural approach in dealing with the pattern in Fig. 1. She first

counted the squares for patterns 1, 2, and 3 and then built

pattern 5 with the toothpicks. After she had counted 16

toothpicks for pattern 5, she then reasoned as follows:

‘‘[Pattern 5] has 16 because 4 · 5 = 20 and since you had

16 before, you have extra ones in there, so subtract 4 [and]

you get 16.’’ In establishing a formula, she reasoned

analogously in the following manner: ‘‘P = (n · 4) – 4 to

get to 16. Are we always going to take away 4? Look at

pattern 3. 4 · 3 = 12, so subtract from pattern number,

how do you say that? One less than n.’’ She used the same

figural scheme to calculate the required number of tooth-

picks in pattern 15. However, when Emma started feeling

overwhelmed with having had to account for two con-

straints in symbolic form [i.e., (n · 4) for the total number

of toothpicks and (n – 1) for the number of overlaps that

need to be taken away from the total], she gave up her

figural strategy since it became complicated for her. She

then resorted to establishing a constructive numerical
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generalization (i.e., T = 3n + 1). Hence, figurally estab-

lishing and justifying several different parts and then

expressing them as a deconstructive unit can be a difficult

process for many middle school children.

It could also be the case that deconstructive generalizing

depends on the nature and complexity of a patterning task,

including the instructional mediation used in encouraging

students to think in deconstructive terms. Results of the two

clinical interviews in our Year 2 study separated by a

teaching experiment on deconstructive generalizing show

the students had more difficulty dealing with the W-dot

pattern in Fig. 2 than the adjacent squares pattern in Fig. 1.

In particular, results of the clinical interview with ten

students prior to the teaching experiment show only one

student correctly justified a deconstructive formula in the

case of the W-dot pattern and six students in the case of the

adjacent squares pattern. Further, all eight students inter-

viewed after the teaching experiment were able to justify

the deconstructive formula for the square toothpicks pat-

tern, but only six students in the case of the W-dot pattern.

Thus, it seems that some overlaps in a deconstructive

generalization task are easier to see than others. For

example, the students above found it easier to see overlaps

among the shared adjacent sides of the squares than the

shared interior vertices in a W-dot formation.

Finally, even in the context of a teaching experiment in

which middle school children are provided with an

opportunity to acquire experiences relevant to deconstruc-

tive generalizing, deconstruction continues to be a difficult

task. Steele and Johanning (2004) developed a teaching

experiment in which eight US 7th graders were asked to

generalize five linear and three quadratic problem situa-

tions that pertained to growth, change, size, and shape.

Their results show that, in the case of tasks that contained

figural cues, only three students established and justified

deconstructive generalizations (or ‘‘well-connected sub-

tracting-out schemas’’). In the clinical interviews with ten

children that we conducted in Year 1 after the teaching

experiment took place, no student was found capable of

establishing and justifying a deconstructive generalization.

Further, in clinical interviews with eight children in Year 2

after a teaching experiment, none of them were still

capable of constructing such forms. However, there was a

significant improvement in their ability to interpret and

justify a stated deconstructive generalization. All eight

students saw the overlapping sides in the adjacent squares

pattern in Fig. 1, and six could see the overlapping interior

vertices in the case of the W-dot pattern in Fig. 2. We

further note that despite their success in justifying, seeing

an overlap was not immediate for most of the students; it

became evident only after they had initially employed

formula appearance match followed by formula projection.

Of course, some students employed formula projection

incorrectly. For example, Jana justified the subtractive term

3 in Zaccheus’s deconstructive generalization (item D in

Fig. 2) in the following manner:

FDR: So if you look at this [referring to the formula

(item D, Fig. 2) in which Jana substituted the value of 2

for n], this one’s four times two plus one, right? And

then minus 3. So how might he be looking at 4 times 2

plus 1 and then minus 3?

Jana: Uhum, the 2 is for the pattern number.

FDR: Uhum. Because when Zaccheus was thinking

about it, he said multiply 4 by n + 1 and then take away

3. So how might he be thinking about it?

Jana: Like it’s gonna be 3 [referring to 2 + 1] and then

it’s gonna be 12 [referring to 4 · 3]. But I counted

there’s only 9, so he has to subtract 3.

FDR: So how might he be doing that? Suppose I do this?

[FDR builds pattern 2 with circle chips in which the

three overlapping ‘‘interior’’ vertices are colored

differently.]

Jana: Hmm, like he has this group of 4 [Jana sees only

two sides in W in pattern 2 with the top middle interior

dot connecting the two sides. Hence, one side has four

dots.].

FDR: Is there a way to see these 4 groups of 3 here

[referring to pattern 2]?

Jana: Like he imagines there’s 3 and he has to subtract

3.

FDR: So can you try it for other patterns? [Jana builds

pattern 4.]

Jana: He has 1 group of 4. So there’s 3 groups of 4 and

he imagines 3 more [to form 4 groups of 4] and then he

subtracts them [the three circles added].

FDR: So he imagines there’s three more. But why do

you think he would add and then take away?

Jana: Because there’s supposed to be 4 groups of 4 and

then you don’t have enough of these ones [circles] so he

adds 3. You add these ones.

8 Conclusion

This paper began with two broad questions that have

guided the longitudinal research program summarized in

this work: what is the nature of the content and structure

of generalization involving figural patterns of middle

school learners? And to what extent are such learners

capable of establishing and/or justifying more compli-

cated generalizations? Various patterning studies that

have been conducted at the middle grades level provide

strong evidence that students’ generalizations shift from

the recursive to the closed, constructive form. In this

article, we discussed in some detail at least three
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epistemological forms of generalization involving figural-

based linear patterns, namely: constructive standard;

constructive nonstandard; and deconstructive. The general

forms are further classified according to strategy com-

plexity, with constructive standard as being the easiest for

most middle school children to establish and, thus, most

prevalent, constructive nonstandard as being slightly dif-

ficult, and deconstructive as the most difficult to achieve.

This classification scheme emerged from detailed analyses

of students’ attempts at generalization over two full aca-

demic years, and elucidates the content and structure of

such generalizations.

We have also discussed how students’ approaches to

establishing generalizations are intertwined with their jus-

tification schemes. Results drawn from our longitudinal

work show middle school students’ cognitive tendency to

shift from a figural to a numerical strategy in establishing

figural-based patterns. We note two consequences. First,

we note changes in their representational skills and fluency,

that is, from being verbal (situated) to symbolic (formal).

Second, such a phenomenological shift affects the manner

in which they justify their generalizations. We have doc-

umented at least four types of inductive justifications,

namely: extension generation; generic example use; for-

mula projection; and, formula appearance match. The entry

level of inductive justification often involves generating

extension cues. Students who then generalize numerically

without having a strong figural foundation are most likely

to employ formula appearance match and use formula

projection inconsistently.
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