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Abstract This paper provides a longitudinal account of

the emergence of whole number operations in second- and

third-grade students (ages 7–8 years) from the initial visual

processing phase to the converted final phase in numeric

form. Results of a notational documentation and analysis

drawn from a series of classroom teaching experiments

implemented over the course of two consecutive school

years indicate successful conceptual progressions in par-

ticipants’ epistemological and synoptical use of visual

representations. Further, their developing symbolic com-

petence in whole number operations underwent several

phases from initially linking notations with their respective

signifieds to developing, elaborating, and routinizing

symbol manipulation rules. Progressive emergence in both

use and competence operated within interacting cycles of

abduction, induction, and deduction.

1 Introduction

This paper provides a longitudinal account of the emer-

gence of whole number operations in children ages

7–8 years from the initial visual processing phase to the

converted final phase in numeric form. Such exact under-

standing of operations often emerges in mathematical

activity with relevant intentional tools [e.g., Dienes blocks

and math drawings (Fuson 2009)] and in learning contexts

and mathematical practices (Font et al. 2013) that support

growth in necessary mathematical knowledge. In this

paper, the following research question is addressed in the

context of a series of classroom teaching experiments

implemented over the course of two consecutive school

years: How do second- and third-grade students process

and convert visual-driven representations of whole number

operations in mathematical form? The research question

underscores conceptual phases they go through as a con-

sequence of changes that occur in their understanding of

whole number operations. The term ‘‘operations in math-

ematical form’’ underscores the significance of deductive

closure in analytical processing of visual representations.

That is, when children manipulate such visual forms,

meaningful inference and thinking should enable them to

abduce rules or principles (i.e., produce conjectures), verify

them through induction, and deduce generalizable rules or

principles that they can apply to novel and other complex

situations. Inference means ‘‘going beyond data,’’ while

thinking involves ‘‘deliberately applying and coordinating

[the] inference to fulfill a purpose’’ (Moshman 2004,

p. 223).

In this study, visual strategies play a mediating role in

the emergence of children’s sophisticated, structured, and

necessary understandings of mathematical objects. Such

strategies provide ‘‘imaginal support’’ that enable them to

be creative, experience breakthroughs, and develop ‘‘self-

evidence’’ of, including ‘‘empathy’’ toward, the intended

mathematical relationships (Fischbein 1987; Rivera 2011).

Children also use visual strategies to help them conduct

explorations, organize relevant data, and anticipate an

intended analysis. Further, such strategies enable them to

develop ‘‘a feeling of intrinsic certainty’’ and ‘‘sensori-

mental structure’’ (Fischbein 1987) and an awareness of the

need to establish rules and reasons (Duval 2002). In fact,

the visual forms they generate convey the manner in which

they justify in a practical context, where the relevant visual

manipulations reflect an emerging structure about ways in
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which they conceptualize such objects (e.g., Csikos et al.

2012; Martin et al. 2007; Rivera 2013).

The data reported in this study have been drawn from a

2-year longitudinal project with an elementary class of 21

students in an urban classroom in Northern California,

USA. The students (7 girls, 14 boys; 20 Hispanics and 1

African-American) were in second grade when they started

the project. Only ten of them met first-grade level state

standards in mathematics on the basis of a districtwide

summative test that was administered in the preceding

school year. Together with their officially designated

teachers (two teachers in second grade and one teacher in

third grade), the author designed and implemented

sequences of teaching experiments that engaged the stu-

dents in a progressive visualization of mathematical ideas.

Funding for the longitudinal project was premised on the

conditions of broadening the participation of all groups and

conducting interventions in schools and classrooms that

needed them the most. The urban school that participated

in the study, with a profile of about 95 % minority students

and about 81 % English learners, consistently had to deal

with second grade students who could not achieve profi-

ciency and advanced levels (i.e., meeting and exceeding

grade-level standards, respectively) in the state mathe-

matics assessment. The school’s second-grade score aver-

ages in mathematics in the years prior to the study were

below proficient, ranging from 35 to 61 %.

2 Theoretical framework

The theoretical framework for the study embraces Duval’s

(2002) semiotic representational perspective of mathe-

matical objects—that is, such objects cannot be directly

accessed because they are primarily ideas. Consequently,

learners can only operate on their representations that make

them perceivable, observable, and intelligible in an

appropriate semiotic format. Hence, when they visualize a

mathematical object or process, it means that they ‘‘see’’ its

essence as it is grounded in some representational context.

Visualization then becomes representational and focused,

which makes it conceptually different from vision that sees

objects in complete wholes.

Visualization is, thus, loaded with epistemological and

synoptic functions. When signifieds undergo visual repre-

senting, learners activate an epistemological function in

which case signifiers are assigned to signifieds. Visualiza-

tion also activates a synoptic function when learners ana-

lytically see through the objects and processes via focusing

actions. In vision, learners see what they see and experi-

ence and often ‘‘require (physical) movement’’ in order to

achieve ‘‘complete apprehension’’ (Duval 2002,

pp. 320–322). In visualization, however, they see ‘‘neither

[a] mental nor physical’’ object but its ‘‘semiotic’’ form.

This way of seeing enables them to construct and deduce

discursive representations that ‘‘can get at once a complete

apprehension’’ or a ‘‘synoptic grasp’’ of ‘‘relations’’ and

‘‘organization of relations between representational units’’

(ibid.).

While discursive representations apply to intentional

images (see Fig. 1), individual learners’ mathematical

‘‘cognitive architecture’’ draws on different kinds of rep-

resentations. Thus, the primary mathematical learning

dilemma involves knowing how to effectively coordinate

between inter- and intra-representational issues in mathe-

matical knowledge construction and understanding (cf.

Tsamir 2001; Bagni 2006; Gal and Linchevksi 2010; Go-

dino et al. 2011; Santi 2011; Rivera 2013). Intra-

Fig. 1 Classification of image-

based (conscious)

representations (Duval 2006,

p. 315)
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representational issues involve transformational process-

ing within the same representational medium (e.g., count-

ing-all to counting-on when adding two whole numbers).

Inter-representational issues involve transformational

conversion(s) between two or more representational sys-

tems. For example, figurate number patterns can be

expressed visually, numerically, algebraically, and graph-

ically, conveying different but equivalent systems. For

Duval (2002), conversion ‘‘is a crucial problem in the

learning of mathematics’’—that is, ‘‘if most students can

learn some [transformational] processing, very few of them

can really convert representations. Much misunderstanding

stems from this inability’’ (p. 318; cf. Duval 2006). Con-

version is also confounded by a translation dilemma—that

is, either two representations may not look congruent (i.e.,

they are not transparent) or their congruence may not be

bidirectional.

Figure 1 also underscores the ‘‘bringing into play a

semiotic system’’ in intentional images. Hiebert’s (1988)

theory of developing competence with written mathemat-

ical symbols is a useful and complementary way of oper-

ationalizing such a system. The theory involves the

processes below. The first two processes are the meaning-

making phases, where notations and actions are linked in

some familiar quantitative context in which they emerge.

The remaining three processes shift the ‘‘concern with

meaning to a concern with power and efficiency [and

transfer]’’ (ibid., p. 341).

(1) Connecting individual symbols with referents;

(2) Connecting individual symbols with referents;

(3a) Elaborating procedures for symbols;

(3b) Elaborating procedures for symbols;

(4) Using the symbols and rules as references for

building more abstract symbol systems. (Hiebert,

1988, p. 335)

Students in the connecting phase of a semiotic system first

establish a correspondence between written notations and

quantities (e.g. whole numbers) and actions (e.g. addition) on

the quantities. Meaningful connections yield transparent

notations that display properties of their specific referents.

Such notations remain at the level of concrete representa-

tions and ‘‘provide mental paths’’ to their respective refer-

ents. Also, the relevant actions convey anticipated actions

that do not necessarily include ‘‘knowledge of the algorithms

used to generate answers’’ (ibid., p. 337).

In the developing phase, they formulate procedures by

manipulating the referents and ‘‘paralleling the action’’

(ibid., p. 338) on either notations or actions. Further, such

procedures are considered successful and valid if the

notations and actions ‘‘faithfully reflect’’ (ibid., p. 339) the

manner in which they are manipulated at the level of

referents.

In the elaborating phase, they extend the same proce-

dures to novel and complex tasks that cause them to reflect

on the procedures (ibid., p. 341). Hence, meanings shift

from their concrete referents to the ‘‘rule system itself’’

(ibid., p. 343) that supports repeated actions and pays

attention to the relationships between notations and actions

on the notations. Such procedures are successful if they are

consistent, that is, they can be applied to all familiar, rel-

evant, and equivalent contexts.

In the routinizing phase, they execute procedures with

minimal effort, seeing them as routines that ‘‘facilitate

further understanding of the system’’ (ibid., p. 344). In the

final phase, building more abstract notational systems, they

learn to ‘‘transfer meaning from a familiar [notational]

system to a new, more abstract system’’ (ibid., p. 344).

3 Elementary students’ understanding of whole

number operations: a brief review

The development of teaching experiments for this partic-

ular study drew on the research syntheses of Clements and

Sarama (2009) and Verschaffel et al. (2007) regarding

young children’s understanding of whole number concepts

and operations. Their syntheses have overlapping features

as a consequence of converging evidence from the field. In

this brief review, while only their work is referenced, the

underlying basis for such a reference, in fact, draws on this

extensive body of research. A good starting point involves

the ability called conceptual subitizing, which enables

children and adults to quickly see and combine parts to

make wholes. Four-to-five-year-old children initially learn

to perceptually subitize four to five objects (i.e., judge their

cardinality quickly without counting them one by one). At

ages 5 and 6, they learn to conceptually subitize to 20.

From age 7 to 8, they are able to conceptually subitize with

place value, skip counting, and multiplication. Progressions

in the use of counting principles that apply to single-digit

whole number addition and subtraction situations tend to

proceed as follows:

• counting all with concrete objects;

• counting all without concrete objects;

• counting on from the first number;

• counting on from the larger number;

• using derived combination strategies (e.g., knowing

doubles statements);

• and mastery (i.e., automatic retrieval) of the different

arithmetical combinations.

In the case of multiplication, progression proceeds in the

following manner:
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• counting all with concrete objects through repeated

addition and additive doubling;

• using patterning strategies (e.g. multiplying by 7

involves adding multiples of 3 and 4) and other derived

combination techniques;

• and mastery of the multiplication table of products.

More complicated cases of place-value operations

involving two or more digits of whole numbers rely on a

firm grasp of the decimal number system. Additionally,

Verschaffel et al. underscore macrocultural conditions

(e.g., family and culture) and recent classroom restructur-

ing initiatives that encourage young children to use mental

arithmetic in the case of more general structures of whole

number operations.

The five phases below are based on the work of Fuson

and colleagues (e.g., Fuson et al., 1997). They describe

elementary school children’s conceptual progression in

their place value understanding of whole numbers. The

phases are not permanent due to factors such as language

use, developmental constraints, conceptual supports within

and outside the classroom, and students’ preference to use

different strategies depending on what they find meaning-

ful in an arithmetical situation. Also, the phases have

implications in how children perceive different represen-

tational relationships that also depend on their familiarity

with different sets of numbers.

[Phase 1; Unitary multidigit conception] Whole-number

quantities are seen as individual units with no sense of

grouping structure in, say, a place value context.

Example: A set of 12 objects is not interpreted in a

place value context and there is no evident

grouping by tens and ones.

[Phase 2; Decade-and-ones conception] Numerals, say

2-digit ones, are slowly being separated into two

quantities with units, which convey a beginning under-

standing of place value structure.

Example: The numeral 12 is seen as consisting of

10 objects and 2 objects.

[Phase 3; Sequence-tens-and-ones conception] Whole-

number quantities at this stage are constructed in terms

of sequences of units in a place value structure.

Example: A set of 12 objects is counted in groups

of ten, which also means inferring a decades-

structure in the process of counting.

[Phase 4; Separate-tens-and-ones conception] Whole-

number quantities and their numeral representation are

interpreted as conveying the union of separate units.

Example: The numeral 12 is seen as consisting of

two separate units, that is, a unit of 10 and units of

1. Also, a unit of 10 is flexibly seen as consisting

of 10 ones.

[Phase 5; Integrated sequence-separate tens concep-

tions] Whole numbers are seen as conveying both

sequence (level 3) and separate (level 4) concepts in a

bidirectional context. Representational fluency in the use

of number words, marks, and quantities for the same

whole number is also evident. Students in this phase

exhibit flexibility that enables them to generate different

approaches and strategies for solving problems involv-

ing, say, 2-digit numbers. (cf. Clements and Sarama

2009; Verschaffel et al. 2007)

Once elementary students become proficient in phases

3 and 4, they learn to operate on two or more whole

numbers in a place value context. In addition and sub-

traction situations, for instance, those who employ a

splitting strategy partition all the numbers by place value,

focus on the digits, count and regroup them when it

becomes necessary, and then record the final answer fol-

lowing the standard notation. Some employ jumping (or

chunking or positional) in which case they start with an

unsplit whole number and then in a sequential manner

count up or down to the next number by place value

chunking until they obtain the total value. From a multi-

plicative thinking standpoint, it is only in Phases 3 and 4

when students can reason explicitly about numbers in

units and visualize them as both whole sets and com-

posites of units. In informal sense-making contexts,

however, they have been documented to produce mental

strategies and variations of splitting and jumping that do

not strictly draw on place value but reflect what they

consider to be meaningful and familiar mathematical

relationships among the numbers. Some well-known

strategies involve compensation, general decomposition,

purposeful jumping, and combinations of such strategies.

Students also use similar strategies in the case of multi-

plication and division of whole numbers.

This particular study utilizes the above framework of

five phases in describing the participants’ progressive

conceptual understanding of place-value splitting opera-

tions involving whole numbers. However, such descrip-

tions begin in Phase 2 when students begin to think of

whole numbers and their operations in terms of structures.

To illustrate, Table 2 shows the conceptual phases for

adding and subtracting whole numbers up to two digits

among second-grade students in a splitting context. The

initial phase corresponds to Phase 2, which supports place-

value manipulations. Within each phase, the following

aspects are also described: (1) the content of processing

and conversion exhibited by the students; (2) the quality of

their mathematical inferences; and (3) either the
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epistemological or synoptical functions of the relevant

visual representations.

In this paper, the descriptions of changes basically draw

on an analysis of notations that the students exhibited in

purposeful mathematical activity for two related reasons.

First, elementary students have been documented to be

capable of inventing, appropriating, and transforming

conventional notations especially in classroom teaching

experiment contexts that are designed to support such

actions (cf. Brizuela 2004). Second, inferences that

accompany their use of such notations are often implied

and they are unaware of them. That is, as Moshman (2004)

points out based on studies with young children, ‘‘what

develops beyond early childhood is not the basic ability to

make logical inferences, but metalogical knowledge about

the nature and justifiability of logical inferences, and

metacognitive awareness, knowledge, and control of one’s

inferential processes (ibid., pp. 222–223).

4 Methodology

4.1 Official content on whole numbers and operations

from first through third grade

First-grade students (mean age of 6 years) in California

learn about whole numbers up to 100 by using physical

models and diagrams, forming number expressions, and

counting and grouping objects in ones and tens with the aid

of Dienes blocks. Conceptual subitizing opportunities

occur through repeating and linear patterning activities and

skip counting by 2, 5, and 10 s to 100 that emphasize

‘‘unit’’ understanding in both geometric and numerical

contexts. They also learn to add and subtract whole num-

bers up to 100, obtain the sum of three one-digit numbers,

and create, write, and solve arithmetical problems involv-

ing addition and subtraction. Regrouping is limited to

counting on from the first number, counting on from the

larger number, and counting on from the smaller number.

In second grade, they deal with numbers up to 1,000 and

learn to formally add and subtract whole numbers with

regrouping. Multiplication is formally introduced using

repeated addition and rectangular arrays and is reinforced

through skip counting activity by 2, 5, and 10 s. Division is

formally introduced through repeated subtraction, rectan-

gular arrays, equal sharing, and forming equal groups with

and without remainders. In third grade, they work with the

base-10 structure of whole numbers and operations up to

10,000 and add, subtract, multiply, and divide whole

numbers in their standard formats. Products in multiplica-

tion do not exceed 10,000. Further they learn to commit to

memory the multiplication table with factors up to 10.

Division is still limited to single-digit divisors and quo-

tients that do not exceed 10,000 (California Department of

Education 1999).

4.2 Development of the 2-year teaching experiments

An initial formative assessment consisting of the three

tasks shown in Fig. 2 was conducted during the first few

weeks of the school year. Results of the informal data

analysis were used to design the first teaching experiment

on whole number concepts. Further, results of a district-

administered benchmark assessment covering several

objectives on whole number concepts became the basis for

designing the second teaching experiment that focused on

Table 1 Second grade student responses on the tasks shown in Fig. 1

Task Count all with concrete or

physical models or pictures

Count on from

the first number

Count on from the

larger (or smaller)

number

Place

value

splitting

Derived

combination

strategies

Mastery of

arithmetical

combinations

Incorrect

responses

1 10 0 1 2 3 0 5

2 13 0 3 0 0 0 5

3a 8 6 0 0 0 0 5

a 19 students

1. [In-class work] The museum shop has 6 fossils. Then it buys 38 more. How many fossils does 
the shop have now?

2. [In-class work] The museum shop has 12 model rockets. 4 are sold. How many model rockets 
are left?

3. [Clinical interview task] What number will complete the following statement? 13 + ___ = 21.
How do you know for sure? How many answers are possible?  

Fig. 2 Three arithmetical

problems given to grade 2

students in the initial assessment
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addition and subtraction of whole numbers. A second dis-

trict assessment was then administered and analyzed,

which signified the closure of the second teaching experi-

ment. The cyclic triad of external assessment (EAi)—

development of teaching experiment—external assessment

(EAi?1) was the underlying design structure of the 2-year

sequence of classroom teaching experiments on whole

number operations. The teaching experiments were

implemented in sequence, following the district’s pacing

guide and assessments.

The development and implementation of every teaching

experiment followed a protocol. In the development phase,

relevant findings from research regarding a target operation

and a proposed learning trajectory were discussed among

the research team that consisted of the author, graduate

assistants, and the teachers. The teachers’ perspectives,

concerns, and insights regarding students’ difficulties and

strengths were especially noted. Activities were then

developed and negotiated. While the activities generally

reflected content requirements stipulated in the state stan-

dards and district pacing guides, the author also developed

the content based on the agreed trajectory and aligned with

the proposed visual model for thinking about whole num-

ber operations.

In the implementation phase, the teachers often began

the discussion together as a whole class, which lasted no

more than 10 min of class time. Since young children enjoy

listening to stories, the teachers used them quite frequently

as a context for discussing and processing academic lan-

guage, concepts, and processes that the students needed to

know in order to accomplish the follow-up individual

work, which usually took about 30 min of class time. On

follow-up days, the teachers used the beginning phase of

class time to praise the class for work already accom-

plished. This cued the students to share their strategies with

the class. The teachers carefully processed the responses in

sequence from the least effective to the most sophisticated.

The students then used that shared knowledge to continue

working on activities independently.

During the independent phase, members of the research

team helped students accomplish the activities. Any issue

that came up was pointed out quickly and discussed by the

team. Interesting strategies and insights from the students’

work were also brought up. Issues, strategies, and insights

that merited a whole-class discussion meant motioning the

whole class to regroup, which cued the students toward

closure. However, in situations when a classroom event

occurred as planned, closure often had the students

engaged in other activities that helped them practice and

strengthen their other mathematical skills. Follow-up

emails were employed to continue the discussion, share

strategies, and prepare succeeding activities with the

students.

4.3 Data collection and analysis

In the first year of the study, data were collected and

analyzed thematically following grounded theory protocols

(Glaser 1992). For example, the author and a graduate

student assistant generated frequencies based on type of

strategies that emerged from the clinical interviews (see

Table 1). The research team used results from students’

classroom work as a basis for all follow-up activities.

Benchmark summative assessments were also collected

every 6 weeks, and items were analyzed for strengths and

weaknesses. District staff external to the team provided

such useful information that allowed the team to assess the

short-term effects of all the teaching experiments. Forma-

tive assessment data that were collected during a teaching

experiment phase included quizzes, homework, and class-

room work; these were organized, labeled, and dated in

individual folders. In the second year of the study, the

primary sources of data were the benchmark and formative

assessments.

In this study, changes in students’ conceptual under-

standing of whole number operations were documented by

analyzing their written work in various stages of every

teaching experiment. Since the social aspect of every

teaching experiment was carefully planned and controlled

to mediate effectively in the development of notations and

processes among the students, the analysis in this paper

addressed ways in which notations became recognizable

and were decoded by the students. Further, the research

team was involved in open coding of all students’ work that

provided them with shared language to talk about students’

thinking at various points in any experiment. The codes

underwent naming, comparing, merging, modifying, and

renaming over time. The author further engaged in selective

coding of the open codes, which involved testing and val-

idating the open codes on copies of students’ work. When

selective codes appeared consistent, that became the basis

for formally establishing theoretical codes. Every theoreti-

cal code consists of a description and representative sam-

ples of student work. The results presented and discussed in

Sect. 5 represent theoretical codes that emerged from both

open and selective coding processes (Glaser 1992).

5 Results

This section describes conceptual phases in the partici-

pants’ processing and conversion of visual-driven repre-

sentations of whole number operations in mathematical

form over the course of 2 years. The descriptions also

include illustrations that show how and when they used the

relevant representations in deducing relevant mathematical

relationships.
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5.1 Unitary visual phase for addition and subtraction

Table 1 is a summary of the second-grade students’

responses on the three tasks shown in Fig. 2. Counting all

with the aid of external tools was consistently the most

favored operational strategy. Overall the students mani-

fested a Phase I conception of whole numbers. At the

epistemological and synoptical levels, circles, sticks, fin-

gers, and the numerals on a number line were interpreted as

individual objects that were used mainly for counting.

5.2 Conceptual processing-conversion phases

for addition and subtraction in grade 2

Table 2 summarizes the underlying conceptual changes and

actions that the second-grade students manifested for the

operations of whole number addition and subtraction in two

sequences of teaching experiments that spanned 10 weeks.

Second-grade Lisa’s work in Fig. 3a–c exemplifies the

transformational processing and conversion that took place

in her subtraction process. Figure 3a, b exemplify struc-

tured thinking at Level III, where Lisa conceptualized the

numbers and the operation in both their numerical and

visual formats together. For example, she initially inter-

preted 32 - 18 = 14 as ‘‘taking away 1 stick and 8 dots

from 3 sticks and 2 dots,’’ which she then processed as

‘‘taking away 1 stick and 8 dots from 2 sticks and 12 dots.’’

Her converted numerical form was a faithful recording of

her processing in visual form. Figure 3c exemplifies Lisa’s

integrated thinking at Level IV. In this situation, the visual

representation was replaced by a deductively drawn dis-

cursive representation in numerical form. That is, her

numerical solutions reflected how she conceived of sub-

traction discursively as operating along rules that involved

regrouping and taking away. Also, the deductive component

in her thinking in Fig. 3c enabled her to apply the sub-

traction rule in a variety of new tasks without the need to

draw numbers in terms of sticks and circles.

5.3 A visual refinement in subtraction regrouping

in grade 2

Figure 4b shows samples of Gerry’s modified understanding

of place value splitting in the case of subtraction with

regrouping. Normally, students at Level III in Table 2 per-

formed subtraction with regrouping by employing a com-

bined decomposition–recomposition process. In the case of

41 - 16, for example, Gerry in Fig. 4a initially decomposed

a stick into 10 circles, redrew the 10 circles in the ones place,

recomposed the circles in the ones place by engaging in a

Table 2 Conceptual visual-to-numerical phases for adding and subtracting whole numbers in grade 2

Conceptual

phases

Transformational processing Transformational conversion Relevant mathematical

inference/s being used

Function of visual

representations

I. Binary

decade-and-

ones

conception

(e.g.,

Figs. 3a, 5)

Place value discernment, where

the digits of whole numbers

being added or subtracted are

seen in terms of sticks (for

tens) and dots (for ones)

Numerical to visual fluency

and vice versa, no

operation evident at this

stage

Abductive inference of

place value structure

and inductive

verification of

structure through

examples

Epistemological discernment of

the relationship between math

drawings and place value units

II. Binary

sequence-

tens-and-

ones

conception

(e.g.,

Figs. 3a, 5)

Place value construction and

ungroup processing, where the

digits of whole numbers are

added or subtracted

sequentially in terms of tens

and ones

Visual and numerical

fluency in adding and

subtracting without

regrouping

Deductive

implementation of

math drawings and

rules for adding and

subtracting without

regrouping

Synoptical understanding of

adding and subtracting digits in

the context of quantities

III. Binary

separate-

tens-and-

ones

conception

(e.g.,

Figs 3a, b, 5)

Complex place value processing,

where the digits of whole

numbers being added or

subtracted are ungrouped and

regrouped according to their

unit requirements

Visual and numerical

fluency in adding and

subtracting with

regrouping

Deductive acquisition

of rules for adding

and subtracting with

regrouping

Epistemological understanding

of the equivalence relationship

between 1 stick and 10 dots;

synoptical understanding of the

regrouping process

IV. Binary

integrated

sequence-

separate

conception

(e.g., Fig. 3c)

Discursive representations, i.e.,

statements of rules for adding

and subtracting numbers in

ungrouping and regrouping

contexts

Numerical recording of an

internalized visual process

for adding and subtracting

numbers in horizontal and

vertical formats

Deductive action on

numerical tasks that

involve addition and

subtraction

Empirical support when

appropriate
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counting-all strategy (‘‘1, 2, 3, …, 10, 11, 12, 13’’) in order to

obtain the total, which he then recorded above the ones

column as ‘‘11.’’ Most of the students, in fact, manifested this

regression to counting-all action. That action unfortunately

prevented them from smoothly transitioning to Level IV. The

dilemma was resolved when their teachers asked them to

skip the decomposition-of-a-stick action in favor of direct

whole-stick regrouping as shown in Gerry’s work in Fig. 4b,

which facilitated counting-on action. For example, in the

case of 81 - 32, Gerry knew that regrouping was needed in

Fig. 3 Second grade Lisa’s

Level III to Level IV subtraction

processing. a Visual stick-and-

circle subtraction on a place

value mat. b Visual stick-and

circle subtraction on a textbook.

c Numerical-based subtraction
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the ones place. So he regrouped the 8 sticks into 7 sticks and 1

stick, took away 1 stick from the set of 8 sticks and added 1

stick in the set of 1 circle, and then performed take-away

subtraction. His recording of the value under the ‘‘new’’ ones

place was made possible by his ability to engage in Level I

conceptual subitizing.

5.4 Extended diagrammatic place value splitting

in grade 3

In third grade, the students once again drew on their earlier

visual structured experiences in dealing with whole num-

bers of up to five digits. Figure 5 exemplifies a student’s

written work on addition and subtraction problems

involving larger numbers. When the students were initially

presented with four-digit whole numbers, they decided to

use rectangles to represent a thousand digit. They then

proceeded in the usual manner. Further, it took them only

one classroom session to recall the visual-numerical pro-

cessing for adding and subtracting whole numbers by

splitting with and without regrouping. In fact, both simple

and complex de/re/composition cases were pursued

together with relative ease with the ungrouping situations

considered as special cases.

Results of the students’ average proficiency percentage

involving adding and subtracting whole numbers with and

without regrouping on the district and state assessments

over the course of 2 years was about the same, 82 %,

which was significantly much better than their prior school

averages in the previous years.

5.5 Conceptual processing-conversion phases

for multiplication in grades 2 and 3

Table 3 summarizes the conceptual phases for multiplying

whole numbers from single-digit factors to place-value

splitting contexts that emerged in the students’ activity

over 2 years. Their initial formal experiences with the

operation of multiplication had them generating several

different addition sentences for an unordered set of 6 cir-

cles. Responses that conveyed repeated addends became

the basis for processing the meaning of multiplication of

two whole numbers and converting to the notation a 9 b,

where a refers to the number of equal groups and b the

Fig. 4 Second grade Gerry’s

transformation processing of

subtraction with regrouping action.

a Combined decomposition–

recomposition action. b Direct

recomposition

Fig. 5 Combined visual-

numeric adding and subtracting

in grade 3
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number of circles in each circled group. Three responses

mattered, as follows: (1a) 3 ? 3; (2a) 2 ? 2 ? 2; and (3a)

1 ? 1 ? 1 ? 1 ? 1 ? 1. Their teachers used the three

addition expressions to introduce them to multiplication in

words, as follows: (1b) 2 equal groups of 3 circles or 2 3 s;

(2b) 3 equal groups of 2 circles or 3 2 s; and (3b) 6 equal

groups of 1 circle or 6 1 s. The verbal responses then

became the basis for conversion to the symbolic form, as

follows: (1c) 2 9 3; (2c) 3 9 2; and (3c) 6 9 1.

Over the course of three sessions, they filled out a

fourfold organizer such as the one shown in Fig. 6, which

reinforced the different mathematical ways of perceiving

single-digit whole-number multiplication. For Karl, the

expression a 9 b meant that he was constructing equiva-

lent actions that conveyed equal groups, equal rows, equal

addends, and finding products. Results of the clinical

interviews conducted at the end of the school year among

the second-grade students indicate that 17 of them acquired

Level I proficiency. For example, Mark in Fig. 7 inter-

preted each stipulated multiplicative expression by first

identifying the common unit and then circling the indicated

number of groups. When asked which multiplicative

Table 3 Conceptual visual-to-numerical phases for multiplication from grade 2 to grade 3

Grade

level

Conceptual

phases

Transformational

processing

Transformational

conversion

Relevant mathematical

inference being used

Function of visual

representation

Grade

2

I. Early

multiplicative

visual

conception:

Expanded

modeling (e.g.,

Figs. 6, 7)

Repeated unit

discernment, where a

given quantity (i.e.

product) is seen as the

union of equal groups

of the same unit

(multiplicand)

Visual to numerical

fluency and vice

versa, emergence of

the symbolic

notation a 9 b

Abductive inference of

two single-digit whole

number multiplication

as repeated addition

and inductive

verification through

examples

Epistemological

discernment of forming

equal groups relative to

a common unit;

Synoptical analysis of

a 9 b objects in terms

of sets and arrays

Grade

2

II. Intermediate

multiplicative

visual

conception:

Contracted

modeling (e.g.,

Fig. 8)

Repeated unit

construction, where

real and experientially

real phenomena are

interpreted in

multiplicative terms

Visual to numerical

fluency and vice

versa, expressing

real and

conceptually real

phenomena as

multiplicative

expressions

Inductive

implementation of

grouping actions in

terms of common

units

Epistemological

understanding of

equivalent

representations for

expressing the same

multiplicative

relationships

Grade

2

Grade

3

III. Advanced

multiplicative

visual

conception:

Number

strategy-derived

modeling (e.g.,

Figs. 6, 9)

Multiple unit

construction, where a

quantity expressed in

multiplicative form can

be expressed as the

union of two or more

multiplicative

relationships resulting

from decomposing the

quantity into smaller

units

Visual and numerical

fluency relating

multiplication as a

counting task

Abductive construction

of local multiplicative

relationships and

inductively

verification on

examples

Synoptical understanding

of equivalent

multiplicative

structures

Grade

3

IV. Place value

splitting

conception in a

multiplicative

context (e.g.,

Fig. 10a)

Place value processing,

where a given quantity

(multiplicand) is seen

in a split context (i.e. as

the union of several

units) that needs to be

repeated (according to

some multiplier) and,

whenever appropriate,

combined, ungrouped,

and regrouped

Visual to numerical

fluency, with and

without regrouping

in both horizontal

and vertical formats

of multiplication

Abductive–inductive–

deductive acquisition

of rules and

application of whole

number properties for

multiplying whole

numbers

Synoptical understanding

of the multiplication

process in a split

context

Grade

3

V. Integrated

multiplicative-

based place

value splitting

conception

(e.g., Fig. 10b)

Discursive

representations, i.e.,

general statements of

rules for multiplying

whole numbers by a

single-digit whole

number

Numerical method for

multiplying multi-

digit whole numbers

by single-digit

whole numbers

Deductive action on

numerical tasks that

involve multiplication

Empirical support when

appropriate
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expression made sense to him, Mark thought that ‘‘they

[we]re all correct because they’re all the same circles.’’

The students in second grade achieved Level II profi-

ciency in the context of problem solving-driven activity.

They inferred their converted numerical expressions as a

result of initially processing and expressing the relevant

problems such as the one shown in Fig. 8 in visual form.

Lisa’s work shows how she used her visual representation

to transition to the verbal form that enabled her to obtain

the answer via skip counting by 10 s.

The disposition toward Level III thinking emerged as a

cognitive coping strategy that was not directly taught to the

students. For example, on the second day of the teaching

experiment in second grade, Karl in Fig. 6 obtained the

product of 4 9 6 by taking the sum of pairs of addends,

that is, 12 ? 12. Karl in Fig. 9 continued to use the same

decomposition strategy in the case of 6 9 7, which he

interpreted as being equivalent to the sum of

14 ? 14 ? 14. When the students were in third grade,

some of them consistently visualized sets of objects in

terms of the union of two or more simpler multiplicative

and/or additive expressions. Especially when a factor

involved any of the digits 6, 7, 8, and 9, on their own they

visually partitioned them in terms of multiplication facts

that they were already familiar with. Further, the commu-

tative and associative principles also played a significant

role in Level III, which they applied in problems in which

the corresponding multiplication facts needed to be broken

down into simpler factors. For example, Karl’s written

work in Fig. 9 shows a visual-to-numerical parsing of

6 9 7 in terms of 3 9 (2 9 7).

Third grader Pam’s work on the multiplication com-

pare problem in Fig. 10 illustrates Level IV thinking that

enabled her to smoothly transition to Level V. Initially

she employed visual processing on the place value rep-

resentations as shown in Fig. 10a. The numbers under

each column in Fig. 10a represented the numbers of

objects that remained after a visual regrouping action on

the relevant columns. Hence, when she transitioned to

Level V, as shown in Fig. 10b, her multiplication algo-

rithm merely recorded a series of processing actions,

where the top numbers conveyed regrouping actions and

the bottom numbers indicated the remainders after

regrouping.

5.6 Conceptual processing-conversion phases

for division in grades 2 and 3

Table 4 summarizes the conceptual phases for dividing

whole numbers from single-digit factors to place-value

splitting contexts that emerged in students’ activity over

2 years. The students in second grade initially explored

sharing-partitive division problems and employed two

basic distributive actions that reflect Level I and II pro-

cessing. Students at Level I randomly assigned objects to

boxes. They associated the concept of division in terms of a

correspondence between two sets, that is, from objects that

needed to be distributed one by one to groups. They

Fig. 6 Second grade Karl’s

multiple representational

understanding of 4 9 6
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perceived quotient as referring to the number of objects in

each group (i.e., internal division).

Students at Level II exhibited more systematic pro-

cessing than those at Level I. Some of them initially con-

structed the required number of boxes horizontally or

vertically and then distributed the objects one by one to

each box either from left to right or top to bottom,

respectively (Fig. 11a). A few others drew sticks or circles

corresponding to the dividend, labeled them consecutively

from 1 to n, where n corresponds to the value of the divisor,

and then counted the objects that shared the same label that

they inferred to be the quotient (Fig. 11b). Concrete and

physical actions manifested at Levels I and II conveyed the

observation that the students initially associated division

with distributive action.

When the students achieved proficiency at Level II, they

next tackled measurement-partitioning division problems.

The most prevalent visual strategy at Level III was grouping or

iterating by the divisor through either counting on, skip

counting, or combinations of both strategies (Fig. 12). They

stopped only when their count reached the required total. In

this case, they perceived division as a systematic

Fig. 7 Second grade Mark’s

work on a multiplication task

administered during an end-of-

the-year clinical interview
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Fig. 8 Second grade Lisa’s

Level II analysis of a

multiplication problem

Fig. 9 Second grade Karl’s

Level III thinking on the

expression 6 9 7

On Saturday, 1355 people visited the zoo. Three times as many people visited on Sunday than on
Saturday. How many people visited the zoo on Sunday?

a b

Fig. 10 Grade 3 Pam’s

multiplicative transformation

from Level IV to Level V

thinking. a Visual processing.

b Numerical recording
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correspondence between two sets, from groups of objects to

the number of groups formed. In this case they viewed quo-

tient as referring to the number of groups formed (i.e., external

division).

Level IV thinking emerged in third grade when the

students focused on place value division. The emerging

long division algorithm at this level was once again viewed

as a numerical recording of a sequence of ungrouping–

Table 4 Conceptual visual-numerical phases for division of whole numbers in grades 2 and 3

Grade

level

Conceptual phases Transformational

processing

Transformational

conversion

Relevant

mathematical

inference being used

Function of visual

representation

Grade

2

I. Early

correspondence

modeling in a

sharing-partitive

context: internal

division through

distributive random

action

Distributive action

discernment, where a

given quantity

(dividend) is seen as

individual units that

are assigned to

groups (divisor) in an

unsystematic random

manner

Visual fluency,

informal operation

(i.e., gestural and

pictorial

demonstrations)

evident at this stage

Abductive inference

of equal grouping

conception through

distributive action

and inductive

verification through

examples

Epistemological

understanding of the

relationship between

division and

distributive action in

a sharing-partitive

context resulting in

the production of a

common unit

Grade

2

Grade

3

II. Foundational non-

place value splitting

in a sharing-partitive

context: internal

division through

distributive

systematic action

(e.g., Fig. 11a, b)

Internal division

construction, where a

given quantity

(dividend) is equally

distributed over

groups (divisor) and

quotient refers to the

common unit with

remainders as a

special case

Visual to numerical

fluency, emergence

of symbolic notation

c 7 a = b, which

stems from

a 9 b = c

Inductive

implementation of a

systematic abduced

distributive action

yielding a common

unit

Synoptical

understanding of

what it means to

divide whole

numbers into (equal)

groups of common

units

Grade

2

Grade

3

III. Foundational

nonplace value

splitting in a

measurement-

partitioning context:

external division

through grouping or

iterative action (e.g.,

Fig. 12)

External division

construction, where

equal grouping

action and iterating

by a fixed unit

(divisor) yield the

required quantity

(dividend) and the

required quotient (i.e.

number of groups or

iterations) with

remainders as a

special case

Visual to numeric

fluency relating

grouping action and

numerical skip

counting activity in a

simultaneous

manner; further

understanding of

c 7 b = a, which

stems from

a 9 b = c

Abductive inference

of equivalent actions

among skip

counting, iterating,

and grouping

activity and

inductively verifying

the equivalence

through examples

Synoptical

understanding of the

equivalence of equal

grouping action and

skip counting activity

in multiplication and

division in

measurement-

partitioning contexts

Grade

3

IV. Formal place value

splitting in division

(e.g., Fig. 13a)

Place value processing,

where a given

quantity is seen in a

separate context that

needs to be internally

or externally divided

through repeated

applications of

ungrouping and

regrouping of units

Visual to numerical

regrouping action,

where long is seen as

a recording of either

internal or external

division processing

Deductive

implementation of

rules for dividing

with and without

regrouping in a

splitting context

Synoptical

understanding of the

regrouping process in

either internal or

external division

contexts

Grade

3

V. Integrated place

value splitting in

division (e.g.,

Fig. 13b, c)

Discursive

representations, i.e.,

general statements of

rules for dividing

whole numbers in

any context of use

and grouping action;

visual processing as

needed

Numerical recording

of a stable process

for dividing multi-

digit whole numbers

by single-digit

divisors

Deductive action on

numerical tasks that

involve division

Empirical support

when appropriate
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regrouping actions. For example, third-grader Mark’s

visual representation processing in Fig. 13a employed

internal division thinking at Level II. In the case of

126 7 6, when he could not divide a single (hundreds) box

into six (equal) groups, he recorded it as a ‘‘0.’’ He then

ungrouped the box into 10 sticks, regrouped the sticks

together, divided the sticks into 6 groups, recorded

accordingly, and so on until he completed the division

process for all subcollections. His numerical recording

captured every step in his sequence of visual actions.

At Level V, Mark’s attention shifted away from the

visual form and toward the rule for division, which was

accompanied by two remarkable changes in his numerical

processing. In Fig. 13b, he performed division on each

digit in the dividend from left to right with the superscripts

indicating partial remainders that had to be ungrouped and

regrouped. In Fig. 13c, he made another subtle revision

that remained consistent with his earlier work and experi-

ences. When he was asked to explain his division method,

Mark claimed that ‘‘it’s like how we do adding and sub-

tracting with regrouping, we’re just doing it with division.’’

Results of the students’ average proficiency percentage

involving multiplying and dividing whole numbers with

and without regrouping on the district and state assess-

ments over the course of 2 years was 85 %, which was

about four percentage points higher than the state average.

6 Discussion

The math drawings that the students used in mathematical

activity conveyed visual non-iconic representations that

they endowed with structural relationships in the process of

learning about whole number operations. At the episte-

mological level, it did not matter to them that different

figures represented the same digit in any place since they

primarily attended to the structural meanings of the rep-

resentations. Certainly, the visual representations had a

strong initial structuralist bias in their core, which is

acceptable given the fundamental nature of intentional

images. At the synoptical level, the students’ written

solutions conveyed interesting analytical refinements as a

result of progressions in their inferential and thinking

abilities. Consider, for instance, the sequence of intra-

representational processing phases in Gerry’s visual solu-

tions in Fig. 4a, b and Mark’s numerical solutions shown in

Fig. 11 Level II internal

division processing in grade 2.

a Filling a box method. b Same

label method

Fig. 12 Level III external

division processing in grade 2
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Fig. 13 Third grade Mark’s

division processing and

conversion. a Mark’s combined

visual-numeric approach on a

division problem. b Mark’s

numerical division processing

that moved away from the long

division format. c Mark’s

numerical division processing

refinement of b
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Fig. 13b, c and the sequence of inter-representational

conversion phases in Lisa’s and Pam’s visual-to-numerical

solutions in Figs. 3b, c and 10a, b. In these cases, changes

in their inferential and thinking abilities (i.e., abductions,

inductions, and deductions) enabled changes in both

aspects of processing and conversion of visual and

numerical representations in various conceptual phases.

Accounts of progressive conceptualization in the existing

mathematics education literature at the elementary level also

underscore the role of inferring and thinking in the emer-

gence of necessary mathematical knowledge. Results of this

study, however, suggest the view that students’ success in

the processing and conversion of their visual representations

of whole number operations in numerical form would be

possible only if they experience certainty that comes with

deduction (Pillow et al. 2010). In this study, the visual

representations initially operated within a deductive axi-

omatic structure, that is, math drawings as diagrams with

well-defined meanings in a place-value context. When the

students implemented the four arithmetical operations on

them, their visual experiences enabled them to empirically

infer stable and routine effects that the operations had on

those diagrams. That is to say, the effects that emerged from

abductive–inductive actions became the necessary ground-

ing for generalization of rules. Further, when they experi-

enced success in applying the rules in different arithmetical

situations, it signaled the phase of deductive inferencing

where they began to think about them as algorithms.

Results of this study also provide an empirical demon-

stration of Hiebert’s theory of written symbol competence,

which complements Duval’s theory and implicitly draws

on inferencing and thinking in various phases. The first

four phases in Hiebert’s theory, especially, capture quite

well one way in which students’ processing and conversion

of whole number operations transitioned from seeing visual

representations as symbols of quantities to establishing

algorithms as necessary symbols for efficiency and trans-

fer. Analyses of the students’ written work and the sum-

maries provided in Tables 2, 3, and 4 indicate the

following observations.

1. Connecting individual symbols with referents: Phase I

for all operations in Tables 2, 3, and 4 enabled the students

to link both personal and math drawings with their

respective signifieds. In this initial stage of notational

processing, the students needed to coordinate the following

three factors in order to establish meaningful and suc-

cessful connection: (a) simplicity (e.g., math drawings

versus faithful drawings of Dienes blocks); (b) visual-

verbal-numeric transitions (e.g. Fig. 8); and (c) concrete

and anticipated actions on the representations (Fig. 11).

Further, the coordination took place solely at the visual

level, especially in situations that involved simple manip-

ulations resulting from the application of a certain

operation. For example, the division problem tackled in

Fig. 11a, b for a Phase I learner conveyed an anticipated

action of distributing 14 objects into 7 boxes. Hence, in the

case of internal division, the learner acquired the visual

variables (Duval 2002) that mattered (i.e., objects and

boxes). Another example involves Karl’s multiple repre-

sentations of two single-digit multiplication in Fig. 6.

Across the different representations, Karl knew that his

visual variables involved either constructing boxes that all

had the same number of objects in each box or forming a

rectangular array of equal-sized rows.

2. Developing symbol manipulation procedures: Phase

II under addition/subtraction and multiplication in Tables 2

and 3 and phases II and III under division in Table 4

marked the beginning phases in which the students for-

mally operated on two whole numbers. The examples they

explored involved simple ungrouping contexts that enabled

them to abduce and induce—and, thus, generalize—rules

for combining the notations in a concrete way. For exam-

ple, Gerry’s work on the subtraction problem 35 - 13 in

Fig. 4a had him taking away 1 stick from 3 sticks and 3

circles from 5 circles. Pam performed the same actions

relative to the ungrouping tasks in Fig. 3b. Central to the

conversion process in these phases for them were the

parallel, faithful, and generalizable actions that enabled

them to link their visual manipulations and their numerical

recording of those manipulations. Generalizations of rules

closed this phase in notational processing.

3. Elaborating procedures for symbols: In phase III

under addition/subtraction and division in Tables 2 and 4

and phases III and IV under multiplication in Table 3, the

students dealt with the more complicated case of

regrouping. These complex situations enabled them to

further test and refine the applicability and consistency of

the earlier formulated rules that they established for the

simple cases. Gerry’s regrouping work in Fig. 4b in the

case of subtraction, Pam’s regrouping work on multipli-

cation in Fig. 11a, and Mark’s regrouping solution on a

division task in Fig. 13a helped them extend their initial

generalization rules involving ungrouping cases to

regrouping situations. However, the processing and

numerical recording of generalizable actions were still

strongly linked to their visual representations. Generaliza-

tion extensions of rules closed this phase in notational

processing.

4. Routinizing procedures for manipulating symbols:

Phase IV under addition/subtraction in Table 2 and phase

V under multiplication and division in Tables 2 and 3

marked the discursive representational phase in which the

students assumed the rules as hypotheses. In these phases,

they applied the rules in different contexts with very

minimal effort. Also, in these phases, the students have

already made a full transition to the numerical format, that
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is, as algorithms that they applied solely at the numerical

level. The written work of Lisa in Fig. 3b, Pam in Fig. 10b,

and Mark in Fig. 13b, c exemplify how they successfully

employed the rules in the absence of any visual support.

7 Conclusion

In this study, notational documentation and analysis cap-

tured the emergence of elementary students’ understanding

of whole number operations in terms of changes within and

between their visual and numerical representations. The

various diagrams conveyed to them a consistent structure

that provided meaningful ways to see the relationship

‘‘between empirical and deductive mathematics’’ (Duval

2006, p. 320). Suffice it to say, a synoptic grasp of visual

representations tends to infer generalizable actions that

when recorded in numerical form provide a basis for dis-

cursive representations.

Across the four arithmetical operations, the students’

progressive conceptualization of whole number operations

operated along similar structural phases. Further, the visual

representations facilitated meaningful mathematical infer-

ence and thinking that were appropriate at their grade level.

Certainly, it helped that they had an ‘‘interpretively con-

ventional character’’ (Perini 2005, p. 268) that loaded them

with truth-bearing and truth-preserving qualities, qualities,

enabling the students to establish the relevant intentional

generalizations. More importantly, however, the conver-

sion to the numerical representations came with it the

experience of deduction, which enabled them to see the

power and efficiency of discursive rules for operating on

numbers in a variety of situations. Of course, it helped that

inter-representational conversion involved congruent rela-

tionships that consequently did not encourage them to

regress to or remain at the visual level. Instead they saw

value in the contracted and algorithmic form of the

numerical versions and notations that also provided another

way of expressing generalizations and discursively-drawn

representations.

One issue that is worth pursuing in a follow-up study

involves understanding how children reason about, and

become fully aware of, the certainty of their inferences

regarding whole number operations from the processing to

the conversion phase, where reasoning pertains to

explaining an inference in the context of some appropriate

norm (Moshman 2004, pp. 223–224). Since this study

primarily drew on notational development and under-

standing, it also implied to some extent how children tend

to ‘‘assimilate’’ information to some ‘‘inference schema,

but do not explicitly think about the process of drawing

conclusions from the premises’’ (Pillow et al. 2010,

p. 214).
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